Posts with «plane» label

Yellow Plane 2 with Inverted V Tail

 

[nickatredbox] keeps up to date with the improvements of his project [yellow plane]. As you can find on this blog, the project is evolving week by week. Let’s see what’s today submission

1200 mm Wing space
280 mm cord
14% Clark Y
Target AUW 1300 Grams

Missing battery and camera box have a design which should weigh 140 grams empty.
The assembly shown below weighs 684 Grams no motor or electronics.
Electronics shown weigh 110 grams ESC Arduino board, Xbee, antenna and Gyro board
Motor & prop another 120 Gram

Here you have a [video]  and there you can follow the project on the [website]

Arduino Aircraft Stabilization Code

We remember [nickatredbox] for the [Yellow Plane],  an Arduino project. Today we have an update to the code. Click on [more] for the full code update.

Revised Yellow FPV Plane with gyro stability system added, Worked best with analogue inputs from Murata piezo gyro sensors of a dead KK board filtered taking a 10 point average. Yaw compensation is currently not used as there is no rudder presently.

Here is a video of the functionality

Here is the Arduino code that calculates the trim values

//Use the pot as the gain for all channels for now
float GainPot = (float)(TxVal[2]) * 0.001f;

//Get the target values from the TX
int PitchTarg = (TxVal[3] / 10);
int RollTarg = (TxVal[4] / 10);
int YawTarg = (TxVal[6] / 10);

//Prime the Target WOZ values
if(PitchTargWOZ == 9999)
PitchTargWOZ = PitchTarg;

if(RollTargWOZ == 9999)
RollTargWOZ = RollTarg;

if(YawTargWOZ == 9999)
YawTargWOZ = YawTarg;

//Get the Centered target values
float PitchTargCentred = (float)(PitchTarg – PitchTargWOZ);
float RollTargCentred = (float)(RollTarg – RollTargWOZ);
float YawTargCentred = (float)(YawTarg – YawTargWOZ);

//Calculate gains
float PitchGain = GainPot * 1.0f;
float RollGain = GainPot * 1.0f;
float YawGain = GainPot * 1.0f;

//Get Gyro values
float PitchGyro = (float)(AnIn[2] – AnInWOZ[2]);
float RollGyro = (float)(AnIn[1] – AnInWOZ[1]);
float YawGyro = (float)(AnIn[0] – AnInWOZ[0]);

//Calc P error
float PitchError = (float)PitchTargCentred + PitchGyro;
float RollError = (float)RollTargCentred + RollGyro;
float YawError = (float)YawTargCentred + YawGyro;

//Apply gains
int PitchTrim = (int)(PitchError * PitchGain);
int RollTrim = (int)(RollError * RollGain);
int YawTrim = (int)(YawError * YawGain);

//Constaring trim authority
PitchTrim = constrain(PitchTrim, -30, 30);
RollTrim = constrain(RollTrim, -30, 30);
YawTrim = constrain(YawTrim, -30, 30);

//Dump the trim value
if((TxVal[9] & 0×4) == 0)
{
PitchTrim = 0;
RollTrim = 0;
YawTrim = 0;
}

Here is all the RX the code

#define MAX_CHAN 12
#define MAX_IN_STR 200
#define MAX_SETTINGS 20
#define MAX_NAV_VALS 50
#define MAX_SAMPLE 10

#include

char buf[255] = {0, };
String str = “”;
char *p;

Servo servo[7]; // create servo object to control a servo
int val = 0; // variable to read the value from the analog pin
int AnInWOZ[MAX_CHAN] = {0, };
int AnIn[MAX_CHAN] = {0, };
int AnInBuf[MAX_CHAN] = {0, };

//Get the target values from the TX at rest
int PitchTargWOZ = 9999;
int RollTargWOZ = 9999;
int YawTargWOZ = 9999;

String inputString = “”; // a string to hold incoming data

int Sample = 0;
int TxTemp[MAX_CHAN + 1] = {0, };
int TxVal[MAX_CHAN + 1] = {0, };

int NavVal[MAX_NAV_VALS] = {0, };
int SettingVal[MAX_SETTINGS] = {0, };

int rssiDur = 0;
int DigBits = 0;
int ComState = 0;
long PacketCount = 0;
long NoPacketCount = 0;

//Digital inputs TX code helper
//TxVal[8] |= (digitalRead(5) << 0);//joy 2 push
//TxVal[8] |= (digitalRead(6) << 1);//pb
//TxVal[8] |= (digitalRead(7) << 2);//slide
//TxVal[8] |= (digitalRead(8) << 3);//toggle

void setup() {

// initialize serial:
Serial.begin(38400);

// reserve 200 bytes for the inputString:
inputString.reserve(MAX_IN_STR);

pinMode(2,INPUT);//rssi
digitalWrite(2, HIGH);

servo[0].attach(3); // attaches the servo on pin 3 to the servo object
servo[1].attach(5); // attaches the servo on pin 5 to the servo object
servo[2].attach(6); // attaches the servo on pin 6 to the servo object
servo[3].attach(9); // attaches the servo on pin 9 to the servo object
servo[4].attach(10); // attaches the servo on pin 10 to the servo object
servo[5].attach(11); // attaches the servo on pin 11 to the servo object

NullServos();

//Get all the analogue signals
//Do a wind off zero

for(int i = 0;i < 8;i++)
AnInWOZ[i] = 0;

for(int i = 0;i < MAX_SAMPLE;i++){

AnIn[0] += analogRead(A0);
AnIn[1] += analogRead(A1);
AnIn[2] += analogRead(A2);
AnIn[3] += analogRead(A3);
AnIn[4] += analogRead(A4);
AnIn[5] += analogRead(A5);
AnIn[6] += analogRead(A6);
AnIn[7] += analogRead(A7);

delayMicroseconds(10);
}

for(int i = 0;i < 8;i++)
AnInWOZ[i] = (AnIn[i] / MAX_SAMPLE);

//Prime the WOZ values
PitchTargWOZ = 9999;
RollTargWOZ = 9999;
YawTargWOZ = 9999;

}

void loop(){

//*Get all the analogue signals
for(int i = 0;i < 8;i++)
AnInBuf[i] = 0;

for(int i = 0;i < MAX_SAMPLE;i++){

AnInBuf[0] += analogRead(A0);
AnInBuf[1] += analogRead(A1);
AnInBuf[2] += analogRead(A2);
AnInBuf[3] += analogRead(A3);
AnInBuf[4] += analogRead(A4);
AnInBuf[5] += analogRead(A5);
AnInBuf[6] += analogRead(A6);
AnInBuf[7] += analogRead(A7);

delayMicroseconds(10);
}

for(int i = 0;i < 8;i++)
AnIn[i]= (AnInBuf[i] / MAX_SAMPLE);

//Capture the Xbee comms
int CharCount = 0;

while ((Serial.available()) && ((++CharCount) 0)
inputString += inChar;

if(inputString.length() >= MAX_IN_STR)
break;

//Detect end of packet
if ( (inChar == ‘\n’) && (ComState > 0) )
{
//Serial.println(inputString);

//Count packets
PacketCount++;

int NumChan = ExtractPacket();

//Tramsmitter
if( ComState == 1)
{
for(int i = 0 ;i < NumChan;i++)
TxVal[i] = TxTemp[i];

DoTelemetery();

UpdateServos();

}//Navigator
else if( ComState == 2)
{
for(int i = 0 ;i < NumChan;i++)
NavVal[i] = TxTemp[i];

}//Settings
else if( ComState == 3)
{
for(int i = 0 ;i 50)
{
NullServos();
SoftReset();
}

//delayMicroseconds(1000);
}

int ExtractPacket()
{

int Lchk = 0;
int channel = 0; //initialise the channel count

p = &inputString[0];

while ((str = strtok_r(p, “,”, &p)) != NULL) // delimiter is the comma
{

TxTemp[channel] = str.toInt(); //use the channel as an index to add each value to the array

Lchk += TxTemp[channel];

channel++; //increment the channel

if(channel > MAX_CHAN)
break;
}

p = NULL;
inputString = “”;

//Process in comming data
if(channel > 2)
{
//Remove the remote chk from the total
Lchk -= TxTemp[channel-2];

//Checksum
if((Lchk – TxTemp[channel-2]) == 0)
return channel;

}

return -1;
}

void DoTelemetery()
{

//Send back a telemetery packet
if((PacketCount % 5) == 0)
{
rssiDur = pulseIn(5, LOW, 200);

int PacketType = 12;

//sprintf(buf, “T%02X,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n”, PacketType, rssiDur, PacketCount, NoPacketCount, TxVal[1], TxVal[2], TxVal[3], TxVal[4], TxVal[5], TxVal[6], AnIn[0], AnIn[1], AnIn[2], AnIn[3], AnIn[4], AnIn[5], AnIn[6], AnIn[7], DigBits);
//sprintf(buf, “T %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n”, PacketType, rssiDur, PacketCount, NoPacketCount, AnIn[0], AnIn[1], AnIn[2], AnIn[3], AnIn[4], AnIn[5], AnIn[6], AnIn[7], DigBits, TxVal[9]);
sprintf(buf, “T%02X%02X%04X%02X%03X%03X%03X%03X%03X%03X%03X%03X%03X%02X%02X\n”, PacketType, rssiDur, PacketCount, NoPacketCount, AnIn[0], AnIn[1], AnIn[2], AnIn[3], AnIn[4], AnIn[5], AnIn[6], AnIn[7], DigBits, TxVal[9]);

Serial.write(buf);

if(digitalRead(13) == false)
digitalWrite(13, HIGH); // set the LED on
else
digitalWrite(13, LOW); // set the LED off

}
}

void UpdateServos()
{

//Digital inputs TX code helper
//TxVal[8] |= (digitalRead(5) << 0);//joy 2 push
//TxVal[8] |= (digitalRead(6) << 1);//pb
//TxVal[8] |= (digitalRead(7) << 2);//slide
//TxVal[8] |= (digitalRead(8) << 3);//toggle

//Throttle TxVal[1]
//Rotary pot TxVal[2]
//Joy 1 X TxVal[3]
//Joy 1 Y TxVal[4]
//Joy 2 X TxVal[5]
//Joy 2 Y TxVal[6]
//rssi TxVal[7]
//digital TxVal[8]
//micros() TxVal[9]

//Use the pot as the gain for all channels for now
float GainPot = (float)(TxVal[2]) * 0.001f;

//Get the target values from the TX
int PitchTarg = (TxVal[3] / 10);
int RollTarg = (TxVal[4] / 10);
int YawTarg = (TxVal[6] / 10);

//Prime the Target WOZ values
if(PitchTargWOZ == 9999)
PitchTargWOZ = PitchTarg;

if(RollTargWOZ == 9999)
RollTargWOZ = RollTarg;

if(YawTargWOZ == 9999)
YawTargWOZ = YawTarg;

//Get the Centered target values
float PitchTargCentred = (float)(PitchTarg – PitchTargWOZ);
float RollTargCentred = (float)(RollTarg – RollTargWOZ);
float YawTargCentred = (float)(YawTarg – YawTargWOZ);

//Calculate gains
float PitchGain = GainPot * 1.0f;
float RollGain = GainPot * 1.0f;
float YawGain = GainPot * 1.0f;

//Get Gyro values
float PitchGyro = (float)(AnIn[2] – AnInWOZ[2]);
float RollGyro = (float)(AnIn[1] – AnInWOZ[1]);
float YawGyro = (float)(AnIn[0] – AnInWOZ[0]);

//Calc P error
float PitchError = (float)PitchTargCentred + PitchGyro;
float RollError = (float)RollTargCentred + RollGyro;
float YawError = (float)YawTargCentred + YawGyro;

//Apply gains
int PitchTrim = (int)(PitchError * PitchGain);
int RollTrim = (int)(RollError * RollGain);
int YawTrim = (int)(YawError * YawGain);

//Constaring trim authority
PitchTrim = constrain(PitchTrim, -30, 30);
RollTrim = constrain(RollTrim, -30, 30);
YawTrim = constrain(YawTrim, -30, 30);

//Dump the trim value
if((TxVal[9] & 0×4) == 0)
{
PitchTrim = 0;
RollTrim = 0;
YawTrim = 0;
}

//Calc flap anglke
int Flaps = 0;

//Apply flaps
if((TxVal[9] & 0×8) != 0)
Flaps = 25;

//Throttle
val = TxVal[1] / 10;
val = map(val, 1, 179, 30, 179);
val = constrain(val, 1, 165); // scale it to use it with the servo (value between 0 and 180)
servo[0].write(val); // sets the servo position according to the scaled value

//Elevator Joy 1 Y TxVal[4]
val = PitchTarg + PitchTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 135, 45); // scale it to use it with the servo (value between 0 and 180)
servo[1].write(val); // sets the servo position according to the scaled value

//Left Flaperon
val = RollTarg + Flaps + RollTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 165, 15); // scale it to use it with the servo (value between 0 and 180)
servo[2].write(val); // sets the servo position according to the scaled value

//Right Flaperon
val = RollTarg – Flaps + RollTrim;
val = constrain(val, 15, 165);
val = map(val, 0, 179, 165, 15); // scale it to use it with the servo (value between 0 and 180)
servo[3].write(val); // sets the servo position according to the scaled value

//Joy 2 x nose Wheel / rudder
val = (TxVal[6] / 10);
val = map(val, 0, 179, 55, 125);
servo[4].write(val); // sets the servo position according to the scaled value

//Joy 2 Y
val = TxVal[5] / 10;
val = constrain(val, 15, 165); // scale it to use it with the servo (value between 0 and 180)
servo[5].write(val); // sets the servo position according to the scaled value

}

void NullServos()
{

//Throttle TxVal[1]
//Rotary pot TxVal[2]
//Joy 1 X TxVal[3]
//Joy 1 Y TxVal[4]
//Joy 2 X TxVal[5]
//Joy 2 Y TxVal[6]
//rssi TxVal[7]
//digital TxVal[8]
//micros() TxVal[9]

//Throttle
val = 0;
val = map(val, 1, 179, 30, 179);
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[0].write(val); // sets the servo position according to the scaled value

//Elevator Joy 1 Y TxVal[4]
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[1].write(val); // sets the servo position according to the scaled value

//Left Flaperon
val = 90;
val = map(val, 0, 179, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[2].write(val); // sets the servo position according to the scaled value

//Right Flaperon
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[3].write(val); // sets the servo position according to the scaled value

//Joy 2 X
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[4].write(val); // sets the servo position according to the scaled value

//Joy 2 Y
val = 90;
val = constrain(val, 1, 179); // scale it to use it with the servo (value between 0 and 180)
servo[5].write(val); // sets the servo position according to the scaled value

}

void SoftReset() // Restarts program from beginning but does not reset the peripherals and registers
{

//Prime the WOZ values
PitchTargWOZ = 9999;
RollTargWOZ = 9999;
YawTargWOZ = 9999;

NoPacketCount = 0;

asm volatile (” jmp 0″);
}

DARPA's crowdsourced UAV competition heats up, takes off (video)

Late last year, DARPA launched UAVForge -- a competition that invites contestants to create their very own unmanned aerial vehicles, and submit them for voter-based evaluation. The project is far from over, but competing teams have already started sending in their proof-of-flight videos, giving us a glimpse of what's to come. So far, it looks like the GremLion UAV (pictured above) is the early favorite, after coming out victorious in the first round of voting. Developed by a team from the National University of Singapore, the GremLion looks like a bite-sized Death Star and flies around using a coaxial set of rotors that expand tulip-style out of its shell. Also included in the UAVForge showdown is a guy known as X-MAUS -- an Arduino-controlled quadcopter that can apparently transform into a more aerodynamic plane form upon liftoff. And, rounding out the list of notables is a submission from TU Delft known as the QuadShot, which is basically a miniature B-Wing from Star Wars. Except it's real. Hit up the break to see all three in action.

Continue reading DARPA's crowdsourced UAV competition heats up, takes off (video)

DARPA's crowdsourced UAV competition heats up, takes off (video) originally appeared on Engadget on Wed, 08 Feb 2012 04:58:00 EST. Please see our terms for use of feeds.

Permalink | Email this | Comments