Posts with «cloud» label

Codebender Rises from the Ashes

If you were sad that Codebender had bit the dust, cheer up. A site called codeanywhere has acquired the online Arduino development environment and brought it back to life. In addition to the main Codebender site, the edu and blocks sites are also back on the air.

Not only is this great news, but it also makes sense. The codeanywhere site is a development IDE in the cloud for many different programming languages. The downside? Well, all the people who said they’d be glad to pay to keep Codebender alive will get a chance to put their money where their mouth is.

Here’s an excerpt from Codebender’s blog:

First of all, codebender will mostly remain the same. It will continue to operate as a standalone service, so you don’t have to change the way you are currently using codebender. However, it will transition to a monthly subscription service. This means that you will be able to use it for free for 1 month (as a trial, beginning on June 1st, or for the first month after registration), and it will then cost $10/month to keep using it. This is the price to pay for keeping codebender alive and sustainable, and it’s a small one, really.

Secondly, Codeanywhere intends to keep adding more and more features, the same way we have been adding features, libraries, and board support in the past few years. So you can expect codebender to keep improving with time, much as it did until now.

We have to wonder how many people will pay $120 / year to do something they can do for free. Mbed has support from ARM and offers a free IDE. Maybe a better deal with Codebender would have been with Atmel or Arduino. Not that we are opposed to charging for services, but we imagine a lot of people will just use free tools unless they have a strong use case for using a cloud-based service.

We covered Codebender’s short-lived demise back in October of last year.


Filed under: Arduino Hacks, news
Hack a Day 21 Jun 09:00

Hackaday Prize Entry: Water Level Station

All over the world, in particular in underdeveloped countries, people die every year by the thousands because of floods. The sudden rise of water levels often come unannounced and people have no time to react before they are caught in a bad spot. Modern countries commonly have measure equipment deployed around problematic areas but they are usually expensive for third world countries to afford.

[Benne] project devises a low-cost, cloud-connected, water level measuring station to allow remote and central water level monitoring for local authorities. He hopes that by being able to monitor water levels in a more precise and timely fashion, authorities can act sooner to warn potentially affected areas and increase the chance of saving lives in case of a natural disaster.

At the moment, the project is still in an early stage as they are testing with different sensors to figure out which would work best in different scenarios. Latest version consists essentially in an Arduino UNO, an ultrasonic distance sensor, and a DHT temperature/humidity sensor to provide calibration since these characteristics affect the speed of sound. Some years ago, we covered a simple water level monitoring using a Parallax Ping sensor, but back then the IoT and the ‘cloud’ weren’t nearly as fashionable. They also tested with infrared sensors and a rotary encoder.

They made a video of the rotary encoder, which we can see below:


Filed under: The Hackaday Prize

Hackaday Links: December 20, 2015

If you don’t have a Raspberry Pi Zero right now, you’re not getting one for Christmas. Who would have thought a $5 Linux computer would have been popular, huh? If you’re looking for a new microcontroller platform you can actually buy, the Arduino / Genuino 101 is available in stores. This was released a few months ago, but it still looks pretty cool: DSP, BTLE, and a six-axis sensor.

If you don’t know [David], the Swede, you should. He’s the guy that launched a glider from a high altitude balloon and is one of the biggest advocates of tricopters. Now he bought an airplane wing for his front yard. It was an old Swedish air force transport aircraft being broken up for scrap. Simply awesome.

Chocolate chips. Now that the most obvious pun is out of the way, here’s how you make DIP8 cookie cutters.

[Barb] is over at the Crash Space hackerspace in LA, and she has a YouTube channel that goes over all her creations. This week, it’s a layered wood pendant constructed out of many layers of veneer. Take note of the 3M 77 spray glue used for the lamination and the super glue used as a clear, hard finish.

Star Wars was released and we have a few people digging through the repertoire to see what [John Williams] lifted for the new movie. Here’s musical Tesla coils playing the theme for the Force.

Flickr gives you a full gigabyte of storage, but only if you upload JPEGs, GIFs, and PNGs. That doesn’t prevent you from using Flickr as your own cloud storage.

We know two things about [Hans Fouche]: he lives in South Africa and he has a gigantic 3D printer. His latest creation is an acoustic guitar. It may not sound great, but that’s the quality of the recording. It may not play great, but he can fix that with some acetone vapor. It would be very interesting to see 3D printing used in a more traditional lutherie context; this printer could easily print molds and possibly even something to bend plywood tops.

Starting in 1990, [deater] would make a yearly Christmas-themed demo on his DOS box. You can really see the progression of technology starting with ANSI art trees written in BASIC, to an EGA graphical demo written with QBASIC to the last demo in 96 made with VGA, and SoundBlaster effects written in Turbo Pascal and asm.


Filed under: Hackaday Columns, Hackaday links

New Project: The Internet of Bees: Adding Sensors to Monitor Hive Health

Learn how to pull realtime sensor data from a beehive to monitor its weight, temperature, and humidity over the internet.

Read more on MAKE

The post The Internet of Bees: Adding Sensors to Monitor Hive Health appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

Digistump Announces Partnership with Particle’s IoT Cloud

Digistump has recently announced a partnership with Particle over cloud infrastructure that may well be a signal that the diasporan expansion in microcontroller market may be coming to an end.

Read more on MAKE

The post Digistump Announces Partnership with Particle’s IoT Cloud appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

Control an Arduino with Your Smartphone via Blynk

Blynk is a new platform that allows you to build interfaces for controlling and monitoring your projects from your iOS and Android device.

Read more on MAKE

The post Control an Arduino with Your Smartphone via Blynk appeared first on Make: DIY Projects, How-Tos, Electronics, Crafts and Ideas for Makers.

Build Arduino-based IoT apps with Temboo Conditions features

Last week Temboo just added new Conditions features to its IoT Mode interface, making it even easier to connect your Arduino to the Internet of Things! Now, the functionality of Temboo’s Device Coder has been extended to all 2000+ Choreos in the Temboo Library, meaning that data collected from sensors attached to an Arduino Yún can be used to trigger any cloud process, and responses from the cloud can be used to trigger all sorts of hardware actions on your board.

Using IoT Mode on the Temboo website, you can automatically generate ready-to-run Arduino code to execute Choreos from your board without having to write a single line of code yourself—just specify which board and shield you’re using and what Choreo you’d like to run, and all the necessary code will be generated immediately in your browser. And you can also now visually specify what sort of hardware inputs and outputs you would like to use: the code to connect them to your Choreo will be generated as well.

The visual interface includes a pin selector tool that lets you choose which pins you want to activate and how you want them to interact with the Choreo you are running. The pin selector identifies the pins on your board that are available, and also indicates whether those pins are configured to work with digital or analog I/O. Like the generated code itself, the pin selector interface will change to reflect the board and shield you’ve chosen to work with.

Conditions make it quick and easy to build a massive range of IoT applications, like a thermometer that sends SMS alerts, or a motor that runs when it receives an email. Just specify how you want your pins to interact with the web services you are using, and thanks to Conditions, what you specify will be reflected in a complete, production-ready program generated instantly in your browser. Try it out, and email hey@temboo.com to let them know what you think!

Arduino Blog 12 Mar 07:58
arduino  cloud  featured  iot  sensors  temboo  yún  

The Arduino Yun Shield

A few years ago, the most common method to put an Arduino project on the web was to add a small router loaded up with OpenWrt, wire up a serial connection, and use this router as a bridge to the Internet. This odd arrangement was possibly because the existing Arduino Ethernet and WiFi shields were too expensive or not capable enough, but either way the Arduino crew took notice and released the Arduino Yun: an Arduino with an SoC running Linux with an Ethernet port. It’s pretty much the same thing as an Arduino wired up to a router, with the added bonus of having tons of libraries available.

Since the Yun is basically a SoC grafted onto an Arduino, we’re surprised we haven’t seen something like this before. It’s an Arduino shield that adds a Linux SoC, WiFi, Ethernet, and USB Host to any Arduino board from the Uno, to the Duemilanove and Mega. It is basically identical to the Arduino Yun, and like the Yun it’s completely open for anyone to remix, share, and reuse.

The Yun shield found on the Dragino website features a small SoC running OpenWrt, separated from the rest of the Arduino board with a serial connection. The Linux side of the stack features a 400MHz AR9331 (the same processor as the Yun), 16 MB of Flash, and 64 MB of RAM for running a built-in web server and sending all the sensor data an Arduino can gather up to the cloud (Yun, by the way, means cloud).

All the hardware files are available on the Yun shield repo, with the Dragino HE module being the most difficult part to source.


Filed under: Arduino Hacks, hardware

LED cloud lamp in any color you can image

This lamp which [Bablondeemu] built will add a little whimsy to your home decor. The project started as coursework for a Digital Art and Installations class. But the remote controlled color changing cloud ended up being a pretty neat gift for his little brother.

The prototype uses an Arduino, breadboard, and a collection of LEDs to perform its tasks. [Bablondeemu] admits the next revision should have a standalone circuit board. The electronics are housed in a clear plastic container which was then adorned with Polyfill stuffing which would commonly be found inside a decorative pillow. The polyester fibers do a great job or filtering and diffusing the light. But they don’t seem to interfere with the incoming IR signals from the remote control.

If you like the idea of creatively shaped diffusers you should take a look at this giant LED lamp. It’s molded to look like a through-hole package with the leads hiding the power cord.


Filed under: led hacks
Hack a Day 17 Jan 18:01
arduino  cloud  led  led hacks  rgb  

Programming Arduino on the cloud: codebender

codebender is web-based IDE, mainly built with HTML5 and Javascript, that focuses on the development for the Arduino platform. Since it is going to be used directly from the browser (note that currently codebender is still beta), it will further simplify the whole development process, avoiding the installation of software and libraries on the local machine.

From the home page of the project:

We want to lower the barrier to entry, which is necessary to help everyday people start their first project, become makers and advance technology instead of using it. codebender requires no installation, so you can get started with Arduino programming the minute you get one in your hands! And with the development tools we provide, you can do so faster and easier! codebender also stores your code on the cloud, so it’s safe and accessible from anywhere, anytime.

Several nice features will be available soon, such as remote flashing: together with an Ethernet shield flashed with a properly designed TFTP bootloader, you will be able to upload a sketch remotely, over the internet! Another nice feature regards its integration with the open documentation available on the Arduino website, which will be accessible directly from the IDE by selecting a piece of code and, then, by pressing ctrl+space.

More information can be found here.

[Via: HackADay and codebender's website]