Posts with «autonomous» label

A Concept for a Robot that I am planning to build

Jetsonbot

Primary image

What does it do?

Avoid obstacles with vision

Hardware overview is in the video with a better description.

Jetson TK1 processes images from the USB webcam and the two Raspberry Pi NoIR cameras then sends commands to the Arduino Mega in order to move autonomously around the environment avoiding obstacles.

The software is custom written and uses OpenCV for image processing.  No ROS, no SLAM, no neural nets or whatever.

Cost to build

Embedded video

Finished project

Number

Time to build

Type

URL to more information

Weight

Fire Fighting Robot

Primary image

What does it do?

Navigate a Maze, extinguish a flame, track position

I'm currently a sophomore at Worcester Polytechnic Institute studying Robotics Engineering. The third course in the series, RBE 2002, focusing on sensors. In a group of 4 students, we built a robot that could autonomously navigate a maze, locate a flame, put it out and report its X,Y, and Z position relative to its starting position. The robot was required to use an IMU and a flame sensor provided to us. All other sensors and parts are up to the group to use to complete the challenge.

Cost to build

Embedded video

Finished project

Complete

Number

Time to build

Type

URL to more information

Weight

read more

Did a Solar-Powered Autonomous Boat Just Cross the Pacific Ocean?

Damon McMillan built a robotic boat. Not just any robotic boat. This one is sailing across the world's oceans. And it's just simple and elegant enough to work.

Read more on MAKE

The post Did a Solar-Powered Autonomous Boat Just Cross the Pacific Ocean? appeared first on Make: DIY Projects and Ideas for Makers.

How to use a new electronics board for dummies: MegaPi example

How to use a new electronics board for dummies: MegaPi example

How to use a new electronics board for dummies: MegaPi example

How to use a new electronics board for dummies: MegaPi example

Autonomous Musical Soundscapes from 42 Fans and 7 Lasers

[dmitry] writes in to let us know about a new project that combines lasers with fans and turns the resulting modulation of the light beams into an autonomous soundscape. The piece is called “divider” and is a large, wall-mounted set of rails upon which seven red lasers are mounted on one end with seven matching light sensors mounted on the other end. Interrupting the lasers’ paths are forty-two brushless fans. Four Arduino Megas control the unit.

Laser beams shining into light sensors don’t do much of anything on their own, but when spinning fan blades interrupt each laser beam it modulates the solid beams and turns the readings of the sensors on the far end into a changing electrical signal which can be played as sound. Light being modulated by fan blades to create sound is the operating principle behind a Fan Synth, which we’ve discussed before as being a kind of siren (or you can go direct to that article’s fan synth demo video to hear what kind of sounds are possible from such a system.)

This project takes this entire concept of a fan synth further by not only increasing the number of lasers and fans, but by tying it all together into an autonomous system. The lasers are interrupted repeatedly and constantly, but never simultaneously. Listen to and watch it in action in the video below.

There isn’t a lot of in-depth technical information on the project page, but there are many really good photos. We especially love the way that the whole assembly is highly visual with the lasers turning on and off and interacting with different fans.

Any changing electrical signal can be played as sound, and if there’s one thing projects like self-playing musical hardware can teach us, it’s that if you have an electrical signal that looks strange or chaotic, hook a speaker up to it because it probably sounds pretty cool!


Filed under: musical hacks

EG First 2nd rev bot

Primary image

What does it do?

Modified RC obstacle avoidance Car

Very new to this site. Been playing with this project on and off for 6 months. Completed once then went back to and it wasn't working. Tried to troubleshoot and burnt out the chip. Pulled out the whole circuit board. Then rewired the battery pack. At that point it is just the frame DC motors on front and back(front geared to turn right and left, back left as dc motor for fowards and back) . I pulled an H bridge chip from a motor drive expansion board and breadboarded it .

Cost to build

Embedded video

Finished project

Number

Time to build

Type

URL to more information

Weight

read more