Posts with «arduino» label

A Modern Solution To Tea Bag Inventory Management

Britain is famously known as a land of manners and hospitality. Few situations could make an Englishman’s stiff upper lip quiver, short of running out of tea bags while entertaining house guests. Thankfully, [The Gentleman Maker] is here and living up to his name – with a helpful tea monitor to ensure you’re never caught out again.

The Intelli-T, as it has been dubbed, monitors tea inventory by weight. An Arduino Uno combined with a HX711 IC monitors a load cell mounted under a canister, with a reed switch on the lid. Upon the canister being open and closed, the Arduino takes a measurement, determining whether tea stocks have dipped below critical levels. If the situation is dire, a Raspberry Pi connected over the serial port will sound an urgent warning to the occupants of the home. If there is adequate tea, the Raspberry Pi will instead provide a helpful tea fact to further educate the users about the hallowed beverage.

It’s a fun project, and one that has scope for further features, given the power of the Raspberry Pi. A little more work could arrange automatic ordering of more tea online, or send alerts through a service like IFTTT. We’ve seen [The Gentleman Maker]’s uniquely British hacks before, such as the umbrella that tells you the weather. Video after the break.

Hack a Day 21 Feb 06:00

Relativty is a low-cost VR headset you can build yourself

While you’ve been hearing about virtual reality for the last 20 years or so, today the hardware required to build such a rig is finally to the point where it’s within the reach of consumers. As seen here, Relativty is a SteamVR-compatible headset that can be made for around $100.

Relativty uses a 3D-printed frame to house its 2560 x 1440 LCD screen, along with a pair of 80mm Fresnel lenses to properly focus the image. Control is accomplished via an Arduino Due and an MPU-6050 accelerometer, which feeds head-tracking info to an external gaming system. 

At this point, the device is clean though fairly basic, and will hopefully be the start of a truly excellent open source project as features are added.

Custom Firmware For Cheap Fitness Trackers

The concept of wearable hardware is an enticing one, but it can be difficult to tackle for the first-time maker. While many of us are experienced at designing PCBs and soldering up arcane gadgets, interfacing with the soft and fleshy human form can present unforeseen difficulties. There’s a way around that, of course – leveraging an existing platform where someone else has already done the work. That’s precisely what [Aaron Christophel] has done, by reverse engineering and developing custom firmware for cheap fitness trackers (Google Translate).

The first part of [Aaron]’s work consisted of research and disassembly. After purchasing a wide variety of fitness trackers online, he eventually came across his favored unit, the Tracker I6HRC by IWOWNFIT. This features an NRF52832 microcontroller, as well as an IPS display, some Flash storage, and a vibration motor. Connectivity is handled over Bluetooth Low Energy. [Aaron] particularly rates it for the well-made case that can be disassembled without damage, and the spare USB 2.0 pads on the board which can be used to program the device over the SWD interface.

[Aaron] has developed an Arduino-compatible firmware which is discussed further in a forum post.  Most of the peripherals on board have been explored, and reducing power consumption is a current area of active development.

Firmware hacks are always fun – have you considered giving your TV a custom boot screen? Have a FitBit original instead of the clone? There’s a hack for that too.

[Thanks to Jim for the tip!]

Make your own MIDI keyboard matrix (or just buy one?)

If you’ve ever seen a MIDI pad with dozens of light-up buttons producing electronic music, you may have considered building one using an Arduino. As shown in GreatScott!’s latest write-up, you can indeed create your own Novation Launchpad-like device using a Nano for control, but the real question is should you?

In the video below, GreatScott! shares how made a 6×6 pad, using a 3D-printed body and buttons arranged in a matrix to save I/O, along with WS2812B LEDs. He also goes over the MIDI protocol, which he was able to implement using loopMIDI and Hairless MIDI to serial bridge for Arduino interface. 

While the DIY option may or may not be right for you, the concepts presented could be applied to a wide range of electronic musical interface projects.

In this episode of DIY or Buy I will be showing you how I created my own Launchpad. That means I will show you how I combined a design idea with 3D prints, WS2812 LEDs, tactile switches and an Arduino to create a proper MIDI instrument. While building I will also tell you a bit about a keyboard matrix and in the end determine what advantages the DIY Launchpad offers. 

Play Mario Kart: Double Dash with a hacked VTech steering wheel

YouTuber “Insert Controller Here” has been creating gaming controllers out of a variety of objects, like bananas, mayonnaise, and meat. For his latest iteration, the YouTuber decided to convert a VTech Turn and Learn Driver into—what else?—a Mario Kart: Double Dash steering console.

As seen in the video below, the build consists of disassembling the toy, then soldering wires to the correct points to recreate steering wheel input, braking, and throttle. An Arduino Leonardo is used for the gaming interface, allowing Mario and Luigi to make it around the track by turning the wheel and applying brakes, while the accelerator is simply “shifted” into place.

RVR is a Sphero robot for budding tinkerers

Sphero's been amusing us with its collection of robotic balls, like its adorable BB-8, for eight years. But lately the company has been getting away from the toy aspect of its products and embracing its educational potential. It's had an app that can be used to program many of its current bots for a while now, but that's only for budding coders — what do kids interested in hardware have to tinker with? Indeed, Sphero is about to release its first robot specifically made to be physically modded, called the RVR.

Controlling a toaster oven robot with Arduino

As seen in our earlier post, James Bruton has been working on a breakfast-making robot, and has now moved from boiling eggs to making toast… or apparently hot dogs/sausages as shown in the video’s demo. 

What he’s come up with uses a one degree-of-freedom gantry assembly to move servo-powered forks into position. These can then manipulate a cooking tray as needed to heat food up, flipping it out into a hand-held container when done. Two other servos take care of turning the device on and opening the door.

The control setup looks extremely similar to the previous build, with control via buttons, an Arduino Mega, and a small LCD display. Bruton notes that the Mega is used here because of its multiple serial ports, which will be useful to link everything together in the future.


Mechanical tulip is a glowing work of Valentine’s Day art

Tulips come in all shapes and sizes, but Jirí Praus has created a mechanical version like nothing you’ve ever seen. It’s masterfully crafted as a gift for his wife, using bent wire to form its six petals and stem. 

In order to make this present truly amazing, however, a servo-driven linkage system opens up the tulip when touched, exposing seven programmable LEDs in the center, along with 30 bright white SMD LEDs on the petals themselves.

Control for the freeform flower is accomplished via an Arduino Nano, hidden inside its wooden base. It’s a truly spectacular build, shown below illuminating the surrounding area with a brilliant light and shadow pattern.

It’s done! Mechanical tulip as a present for my wife. When caressed it blooms into various colors. And will never fade. #freeform #jewelry #arduino pic.twitter.com/yDePeURXXd

— Ji?í Praus (@jipraus) February 12, 2019


Laser Light Show Turned Into Graphical Equalizer

The gold standard for laser light shows during rock concerts is Pink Floyd, with shows famous for visual effects as well as excellent music. Not all of us have the funding necessary to produce such epic tapestries of light and sound, but with a little bit of hardware we can get something close. [James]’s latest project is along these lines: he recently built a laser light graphical equalizer that can be used when his band is playing gigs.

To create the laser lines for the equalizer bands, [James] used a series of mirrors mounted on a spinning shaft. When a laser is projected on the spinning mirrors it creates a line. From there, he needed a way to manage the height of each of the seven lines. He used a series of shrouds with servo motors which can shutter the laser lines to their appropriate height.

The final part of the project came in getting the programming done. The brain of this project is an MSGEQ7 which  takes an audio input signal and splits it into seven frequencies for the equalizer. Each one of the seven frequencies is fed to one of the seven servo-controlled shutters which controls the height of each laser line using an Arduino. This is a great project, and [James] is perhaps well on his way to using lasers for other interesting musical purposes.

Hack a Day 14 Feb 03:00

Freeform Wire Frame Tulip Blooms To The Touch

Holidays are always good for setting a deadline for finishing fun projects, and every Valentine’s Day we see projects delivering special one-of-a-kind gifts. Why buy a perishable bulk-grown biological commodity shipped with a large carbon footprint when we can build something special of our own? [Jiří Praus] certainly seemed to think so, his wife will receive a circuit sculpture tulip that blooms when she touches it.

via @jipraus

This project drew from [Jiří]’s experience with aesthetic LED projects. His Arduino-powered snowflake, with LEDs mounted on a custom PCB, is a product available on Tindie. For our recent circuit sculpture contest, his entry is a wire frame variant on his snowflake. This tulip has 7 Adafruit NeoPixel in the center and 30 white SMD LEDs in the petals, which look great. But with the addition of mechanical articulation, this project has raised the bar for all that follow.

We hope [Jiří] will add more details for this project to his Hackaday.io profile. In the meantime, look over his recent Tweets for more details on how this mechanical tulip works. We could see pictures and short videos of details like the wire-and-tube mechanism that allowed all the petals to be actuated by a single servo, and the components that are tidily packaged inside that wooden base.

Need more digital expressions of love? We have no shortage of hearts. Animated LED hearts, illuminated acrylic hearts, and talking hearts. We’re a little short on flower projects, but we do have X-ray of a rose among others to accompany [Jiří]’s tulip.

It’s done! Mechanical tulip as a present for my wife. When caressed it blooms into various colors. And will never fade. #freeform #jewelry #arduino pic.twitter.com/yDePeURXXd

— Jiří Praus (@jipraus) February 12, 2019