Posts with «robots» label

Meet Moo-Bot, a robotic cow scarecrow

With Halloween around the corner, hackers are gearing up for festivals and trick-or-treaters, hoping to spook visitors or simply impress others with their automation prowess. DIY bloggers Ash and Eileen are no different, and decided to enter a local scarecrow contest in the “Out of this World” category. Their entry? Moo-Bot, an Arduino-powered sheet metal cow that looks like it came straight off the set of a 1950s sci-fi flick.

Not that that is a bad thing; somehow this retro-futuristic bovine looks quite interesting. Making it even better is that the robotic cow’s eyes are made out of two OLED displays, and that it can interact with observers through an internal speaker.

When someone presses a button on its nose, the onboard Uno powers up and tells a pre-recorded series of cow jokes via an MP3 player module. Power is supplied by eight D batteries, which is enough to keep the Moo-Bot going for a few months.

You can read more about the project here, and see it in action below!

Telling the Time with Robots, Lasers, and Phosphorescence

What's cooler than a clock that draws the time with a marker? One that does it with a laser of course! Build your own.

Read more on MAKE

The post Telling the Time with Robots, Lasers, and Phosphorescence appeared first on Make: DIY Projects and Ideas for Makers.

Telling the Time with Robots, Lasers, and Phosphorescence

What's cooler than a clock that draws the time with a marker? One that does it with a laser of course! Build your own.

Read more on MAKE

The post Telling the Time with Robots, Lasers, and Phosphorescence appeared first on Make: DIY Projects and Ideas for Makers.

SKELLY the Skeleton Robot

While it might seem like a long time away to most people, if you’re looking to make an amazing automated display for Halloween, it’s time to start planning! One idea would be an automated skeleton robot like SKELLY.

This particular robot was built using an Arduino Mega, a Cytron PS2 Shield, a modified sensor shield, and a wireless PS2 controller. SKELLY is equipped with a total of eight servos: six for bending his shoulders, elbows and wrists, one for running his mouth, and another for turning his head. There is also a pair of LEDs for eyes, and a small motor in his head with a counterweight that allows him to shake.

SKELLY is programmed using the Visuino visual programming environment. As seen in the videos below, the robot–which is the author’s first–is quite nimble, waving and moving along with an automatic piano!

Project Aslan is a 3D-printed robotic sign language translator

With the lack of people capable of turning written or spoken words into sign language in Belgium, University of Antwerp masters students Guy Fierens, Stijn Huys, and Jasper Slaets have decided to do something about it. They built a robot known as Aslan, or Antwerp’s Sign Language Actuating Node, that can translate text into finger-spelled letters and numbers.

Project Aslan–now in the form of a single robotic arm and hand–is made from 25 3D-printed parts and uses an Arduino Due, 16 servos, and three motor controllers. Because of its 3D-printed nature and the availability of other components used, the low-cost design will be able to be produced locally.

The robot works by receiving information from a local network, and checking for updated sign languages from all over the world. Users connected to the network can send messages, which then activate the hand, elbow, and finger joints to process the messages.

Although it is one arm now, work will continue with future masters students, focusing on expanding to a two-arm design, implementing a face, and even integrating a webcam into the system. For more info, you can visit the project’s website here as well as its write-up on 3D Hubs.

GuitarBot Brings Together Art and Engineering

Not only does the GuitarBot project show off some great design, but the care given to the documentation and directions is wonderful to see. The GuitarBot is an initiative by three University of Delaware professors, [Dustyn Roberts], [Troy Richards], and [Ashley Pigford] to introduce their students to ‘Artgineering’, a beautiful portmanteau of ‘art’ and ‘engineering’.

The GuitarBot It is designed and documented in a way that the three major elements are compartmentalized: the strummer, the brains, and the chord mechanism are all independent modules wrapped up in a single device. Anyone is, of course, free to build the whole thing, but a lot of work has been done to ease the collaboration of smaller, team-based groups that can work on and bring together individual elements.

Some aspects of the GuitarBot are still works in progress, such as the solenoid-activated chord assembly. But everything else is ready to go with Bills of Materials and build directions. An early video of a strumming test proof of concept used on a ukelele is embedded below.

GuitarBot would fit right in to a band where only the instruments operate unplugged. Speaking of robot bands, don’t forget the LEGO-enabled Toa Mata, or the fully robotic group Compressorhead.


Filed under: musical hacks, robots hacks

Assemble a Robot Opponent for Air Hockey

Use JJ Robots' kit and your Android phone to build an air hockey partner who's always game.

Read more on MAKE

The post Assemble a Robot Opponent for Air Hockey appeared first on Make: DIY Projects and Ideas for Makers.

8 Lessons from Building the Strandbeest-Style ClearWalker

Here are a few things Jeremy Cook learned (or relearned) while building a ClearWalker Strandbeest and filming it in action.

Read more on MAKE

The post 8 Lessons from Building the Strandbeest-Style ClearWalker appeared first on Make: DIY Projects and Ideas for Makers.

The ClearWalker is an 8-legged, Arduino-powered Strandbeest

What has eight legs, a tail, and is powered by an Arduino Mega? The ClearWalker, of course!

This Strandbeest-style walker employs two motors, controlled by individual H-bridge relay modules to traverse forwards, backwards, and slowly rotate to one side or another via a hesitating leg motion. You can see how the electronics (including a bunch of LEDs) were integrated into this build in the video below.

If you’d like to try a similar control scheme for your ClearWalker/Strandbeest/treaded vehicle using an Arduino and smartphone, you can find it outlined in this Arduino Project Hub post. For the rest of the steps in this quite involved build, and more rather zany inventions, be sure to check out the “Jeremy Cook’s Projects” YouTube page.

Build your own Arduino balancing robot

If you’re familiar with the Segway or other vehicles that balance in what is known as an “inverted pendulum” configuration, you may think that while interesting, creating something similar would be too complicated or out of your budget. Though perhaps still not simple, Joop Brokking takes you through his design for this type of bot in the video seen here, making it accessible if you’d like to build your own.

The robot, which will cost about $80 in parts, uses two stepper motors for greater movement precision than could be had with normal DC models, and employs an Arduino Pro Mini, along with an MPU-6050 accelerometer/gyroscope for control. It can be driven around by a Wii U-style nunchuck, which transmits to the robot via an Arduino Uno and wireless transceiver module.

You can find more info and product links for this project on Brokking.net.