Posts with «lora» label

Capture the Flag, Along with the Game Data

With events of all sizes on hold and live sports mostly up in the air, it’s a great time to think of new ways to entertain ourselves within our local circles. Bonus points if the activity involves running around outside, and/or secretly doubles as a team-building exercise, like [KarelBousson]’s modernized version of Capture the Flag.

Much like the original, the point of this game is to capture the case and keep it for as long as possible before the other team steals it away. Here, the approach is much more scientific: the box knows exactly who has it and for how long, and the teams get points based on the time the case spends in any player’s possession.

Each player carries an RFID tag to distinguish them from each other. Inside the case is an Arduino Mega with a LoRa shield and a GPS unit. Whenever the game is afoot, the case communicates its position to an external Raspi running the game server.

If you haven’t met LoRa yet, check out this seven-part introductory tutorial.

LoRa Tutorials For The DIY Masses

LoRa is the go-to tech for low power, long range wireless sensor networks. Designing with off-the-shelf modules can be a boon or a bane depending on the documentation and support. Luckily, [Renzo] has prepared a set of tutorials to get you started.
In his seven part series of write-ups, [Renzo] starts by connecting the E32 module from AliExpress to an Arduino as well as an ESP8266 to demonstrate essential communications. Then he discusses the configuration options and the library he created to make like a bit easier. Following that is a series of posts discussing transmission types as well as power saving methods including sleep modes and wake-on-radio.
The information will be extremely handy for someone starting off with the SX1276/SX1278 Wireless Modules which are relatively inexpensive as opposed to more standardized development kits. We love the abundance of fritzing diagrams, arduino code and helper library and hope someone will build on it. You can get the library from Github for your tinkering pleasure.
If you are looking for ideas for this newly discovered skill, have a look at LoRa Enabled Mailbox as well as Electric Fence Monitoring with The Things Network for a bit of IoT action.

LoRa made easy: Connect your devices to the Arduino IoT Cloud

An important new feature is now available in the Arduino IoT Cloud — full support for LoRa® devices!

LoRa® is one of our favorite emerging technologies for IoT because it enables long-range and low power transmission of data without using cellular or WiFi connections. It’s a very powerful and promising technology but it comes with its own complexity. In our pursuit to make IoT easier, we’ve already released a few products that enable anyone to build a LoRa® device (or a fleet of LoRa® devices!). Thanks to the Arduino MKR WAN 1310 board, combined with the Arduino Pro Gateway you can create your own LoRaWAN network. But we have decided to do more than that, and it’s time to release one more important piece….

The  Arduino IoT Cloud now provides an incredibly easy way to collect data sent by your LoRa® devices. With a few clicks, the IoT Cloud will generate a sketch template for the boards that you can adapt to read data from your sensors, pre-process it as you want, and then send it to the IoT Cloud. With a few more clicks (no coding required), you’ll be able to create a graphical dashboard that displays the collected data in real-time and lets users see their history through charts and other widgets. You will not need to worry about coding your own compression, serialization and queueing algorithm, as it will all be done under the hood in a smart way — you’ll be able to transmit multiple properties (more than five), pushing the boundary beyond the packet size limits of LoRaWAN

This is our take on edge computing – you program the device to collect and prepare your data locally, and then we take care of shipping such data to a centralized place.

Such a simplified tool for data collection is already quite innovative, but we decided to take it an important step further. All the available solutions for LoRa® currently focus on collecting data, but they do not address it from the other way round i.e. sending data from a centralized application to the LoRa® device(s). Arduino IoT Cloud now lets you do this — you’ll be able to control actuators connected to your device by sending messages via LoRa®, with no coding needed.

Build and control your own LoRaWAN network with Arduino IoT Cloud, the Pro Gateway and the new improved MKR WAN 1310 board that features the latest low-power architecture to extend the battery life and enable the power consumption to go as low as 104uA.

LoRa security camera detects and transmits trespasser data

Security cameras are a great way to deter theft and vandalism, but what if the camera is out of WiFi range, or otherwise would need long cables to transmit pictures? As explained here, Tegwyn Twmffat has an interesting solution–taking advantage of neural network processing to recognize moving objects, along with a LoRa connection to sound the alarm when there is a potential problem.

Images are captured by a Raspberry Pi and camera, then processed with the help of an Intel Movidius Neural Compute Stick for identification. If it’s something of interest—a human, for example—a relatively small amount of data is transmitted to a MKR WAN 1300 base station, beeping faster and faster as the person approaches. 

As seen in the video below, it’s able to properly ignore the ‘test dog,’ while it beeps away when a person approaches! 

Simple, Self-Contained LoRa Repeater In About an Hour

[Dave Akerman]’s interest in high-altitude projects means he is no stranger to long-range wireless communications, for which LoRa is amazingly useful. LoRa is a method of transmitting at relatively low data rates with low power over long distances.

Despite LoRa’s long range, sometimes the transmissions of a device (like a balloon’s landed payload) cannot be received directly because it is too far away, or hidden behind buildings and geography. In these cases a useful solution is [Dave]’s self-contained LoRa repeater. The repeater hardware is simple, and [Dave] says that if one has the parts on hand, it can be built in about an hour.

The device simply re-transmits any telemetry packets it receives, and all that takes is an Arduino Mini Pro and a small LoRa module. A tiny DC-DC converter, battery, and battery charger rounds out the bill of materials to create a small and self-contained unit that can be raised up on a mast, flown on a kite, or carried by a drone.

The repeater’s frequency and other settings can even be reprogrammed (using a small windows program) for maximum flexibility, making the little device invaluable when going hunting for landed payloads like the one [Dave] used to re-create a famous NASA image using a plastic model and a high-altitude balloon. Check out the details on the GitHub repository for the project and start mashing “add to cart” for parts at your favorite reseller.

Arduino PRO Gateway for LoRa now available for pre-order

We are very happy to announce the Arduino PRO Gateway for LoRa!

Combined with Arduino MKR WAN 1300 IoT nodes it makes an ideal solution for a wide range of applications, like smart agriculture, smart cities and building automation – and many other remote monitoring applications requiring long range, low power wireless connectivity.

The gateway can be used globally and enables multiple channel management. By supporting advanced features like Listen Before Talk (LBT), it allows users to transmit at higher power on the first free channel, achieving longer ranges than conventional gateways for LoRa. 

Arduino continues its mission of making complex technology easy enough for anyone to use. Customers of the Arduino PRO Gateway will be given exclusive beta access to the Arduino IoT Cloud, which makes installation, provisioning and remote management of the gateway incredibly simple through the popular Arduino Create cloud platform.

The gateway features the advanced Embit EMB-LR1301-mPCIe module, hosted by a Raspberry Pi 3 B+ SBC, in a rugged aluminum enclosure. The gateway comes pre-installed with an optimized packet forwarder and a carrier grade Network server for LoRa WAN that is running on the Arduino Cloud provided by A2A Smart City (part of the A2A Group).

Technical Specifications

  • Chipset: Semtech SX1301
  • Modulation: LoRa Spread Spectrum, FSK, GFSK 868MHz (EU) / 915MHz (US)
  • Number of Channels: 8 LoRa Channels
  • Operating Frequency: 868MHz (EU) / 915MHz (US)
  • Frequency Range: 860MHz to 1020MHz
  • Operating Temperature: -40°C to +85°C
  • RF Output Power: Up to +27dBm
  • Sensitivity: Up to -137dBm
  • Interfaces for the LoRa Module:  mPCIe (SPI / I2C / UART / GPIOs) :
  • Dimensions: 71x40x1mm
  • Operating Voltage: +5V
  • Additional Features:
    • Listen Before Talk (LBT) Capability (for improved transmission power management),
    • On-board uFL antenna connector
    • FPGA support for LoRa Spectral Scan

 

The Arduino Pro Gateway for LoRa (868 MHz , EU version) can be pre-ordered from the Arduino Store.

Arduino Blog 14 Nov 10:39

Why Have Only One Radio, When You Can Have Two?

There are a multitude of radio shields for the Arduino and similar platforms, but they so often only support one protocol, manufacturer, or frequency band. [Jan Gromeš] was vexed by this in a project he saw, so decided to create a shield capable of supporting multiple different types. And because more is so often better, he also gave it space for not one, but two different radio modules. He calls the resulting Swiss Army Knife of Arduino radio shields the Kite, and he’s shared everything needed for one on a hackaday.io page and a GitHub repository.

Supported so far are ESP8266 modules, HC-05 Bluetooth modules, RFM69 FSK/OOK modules, SX127x series LoRa modules including SX1272, SX1276 and SX1278, XBee modules (S2B), and he claims that more are in development. Since some of those operate in very similar frequency bands it would be interesting to note whether any adverse effects come from their use in close proximity. We suspect there won’t be because the protocols involved are designed to be resilient, but there is nothing like a real-world example to prove it.

This project is unique, so we’re struggling to find previous Hackaday features of analogous ones. We have however looked at an overview of choosing the right wireless tech.

Hack a Day 28 Jul 09:00

Introducing the Arduino MKR WAN 1300 and MKR GSM 1400!

First unveiled over the weekend at World Maker Faire New York, Arduino has introduced a pair of new IoT boards with embedded LoRa and GSM capabilities.

The Arduino MKR WAN 1300 and MKR GSM 1400 are designed to offer a practical and cost-effective solution for developers, makers and enterprises, enabling them to quickly add connectivity to their projects and ease the development of battery-powered IoT edge applications.

Both of the highly compact boards measure just 67.64 x 25mm, together with low power consumption, making them an ideal choice for emerging battery-powered IoT edge devices in the MKR form factor for applications such as environmental monitoring, tracking, agriculture, energy monitoring and home automation.

Offering 32-bit computational power similar to the Arduino MKR ZERO board, the MKR WAN 1300 is based around the Murata LoRa low-power connectivity module and the Microchip SAM D21 microcontroller, which integrates an ARM Cortex-M0+ processor, 256KB Flash memory and 32KB SRAM. The board’s design includes the ability to be powered by either two 1.5V AA or AAA batteries or an external 5V input via the USB interface – with automatic switching between the two power sources.

In addition, the MKR WAN 1300 offers the usual rich set of I/O interfaces expected with an Arduino board, and ease of use via the Arduino IDE software environment for code development and programming. Other features  include an operating voltage of 3.3V; eight digital I/Os; 12 PWM outputs; and UART, SPI and I2C interfaces.

Like the MKR WAN 1300, the Arduino MKR GSM 1400 is based on the SAM D21, but integrates a u-blox module for global 3G communications. The board features automatic power switching, however, it uses either a 3.7V LiPo battery or an external Vin power source delivering 5V to 12V. While the USB port can also be used to supply 5V to the board, the MKR GSM 1400 is able to run with or without the battery connected.

The MKR GSM 1400 provides a rich set of I/O interfaces including: eight digital I/Os; 12 PWM outputs; UART, SPI and I2C interfaces; analog I/O including seven inputs and one output; and eight external interrupt pins.

Both boards are now available for pre-order on the Arduino Store.

Arduino device helps keep dogs safe from overheating

Pets bring an untold amount of joy into our lives, but unfortunately they aren’t allowed to go everywhere that humans are. Of course this makes sense in many situations, but if you’d like to take your dog with you wherever you go, this means occasionally leaving poochie in the car. Along with leaving the sunroof and windows open, this project’s author also came up with a transmitter and receiver to monitor the temperature inside of the car with a series of LED pulses.

The car unit consists of an Arduino Mega, along with a temperature sensor and LoRa transciever. The receiver takes this wireless information, which can be reliably read at a range of 250 meters (820 feet) in an urban environment, and gives the user a series of blinks to assure Max’s (the dog) human that he’s not overheating!

You can find the entire build’s write-up here, or check out its code on GitHub.

CES17: Arduino Unveils LoRa Modules For The Internet Of Things

WiFi and Bluetooth were never meant to be the radios used by a billion Internet of Things hats, umbrellas, irrigation systems, or any other device that makes a worldwide network of things interesting. The best radio for IoT is something lightweight which operates in the sub-Gigahertz range, doesn’t need a lot of bandwidth, and doesn’t suck down the power like WiFi. For the last few years, a new low-power wireless communication standard has been coming on the scene, and now this protocol — LoRa — will soon be available in an Arduino form factor.

The Primo, and NRF

It’s not LoRa, but the Arduino Primo line is based on the ESP8266 WiFi chip and a Nordic nRF52832 for Bluetooth. The Primo comes in the ever-familiar Arduino form factor, but it isn’t meant to be an ‘Internet of Things’ device. Instead, it’s a microcontroller for devices that need to be on the Internet.

Also on display at CES this year is the Primo Core which we first saw at BAMF back in May. It’s a board barely larger than a US quarter that has a few tricks up its sleeve. The Primo Core is built around the nRF52832, and adds humidity, temperature, 3-axis magnetometer and a 3-axis accelerometer to a square inch of fiberglass.

The Primo Core has a few mechanical tricks up its sleeve. Those castellated pins around the circumference can be soldered to the Alice Pad, a breakout board that adds a USB port and LiPo battery charger.

LoRa

Also on deck at the Arduino suite were two LoRa shields. In collobration with Semtech, Arduino will be releasing the pair of LoRa shields later this year. The first, the Node Shield, is about as simple as it can get — it’s simply a shield with a LoRa radio and a few connectors. The second, the Gateway Shield, does what it says on the tin: it’s designed to be a gateway from other Arduino devices (Ethernet or WiFi, for example) to a Node shield. The boards weren’t completely populated, but from what I could see, the Gateway shield is significantly more capable with support for a GPS chipset and antenna.

A partnership with Cayenne and MyDevices

Of course, the Internet of Things is worthless if you can’t manage it easily. Arduino has struck up a partnership with MyDevices to turn a bunch of low-bandwidth radio and serial connections into something easy to use. Already, we’ve seen a few builds and projects using MyDevices, but the demos I was shown were extremely easy to understand, even if there were far too many devices in the room.

All of this is great news if you’re working on the next great Internet of Things thing. The Primo Core is one of the smallest wireless microcontroller devices I’ve seen, and the addition of LoRa Arduino shields means we may actually see useful low-bandwidth networks in the very near future.


Filed under: Arduino Hacks, news