Posts with «robotics» label

SKELLY the Skeleton Robot

While it might seem like a long time away to most people, if you’re looking to make an amazing automated display for Halloween, it’s time to start planning! One idea would be an automated skeleton robot like SKELLY.

This particular robot was built using an Arduino Mega, a Cytron PS2 Shield, a modified sensor shield, and a wireless PS2 controller. SKELLY is equipped with a total of eight servos: six for bending his shoulders, elbows and wrists, one for running his mouth, and another for turning his head. There is also a pair of LEDs for eyes, and a small motor in his head with a counterweight that allows him to shake.

SKELLY is programmed using the Visuino visual programming environment. As seen in the videos below, the robot–which is the author’s first–is quite nimble, waving and moving along with an automatic piano!

Design and 3D Print Robots with Interactive Robogami

Internals of 3D printed “print and fold” robot. [Image source: MIT CSAIL]
Robot design traditionally separates the body geometry from the mechanics of the gait, but they both have a profound effect upon one another. What if you could play with both at once, and crank out useful prototypes cheaply using just about any old 3D printer? That’s where Interactive Robogami comes in. It’s a tool from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) that aims to let people design, simulate, and then build simple robots with a “3D print, then fold” approach. The idea behind the system is partly to take advantage of the rapid prototyping afforded by 3D printers, but mainly it’s to change how the design work is done.

To make a robot, the body geometry and limb design are all done and simulated in the Robogami tool, where different combinations can have a wild effect on locomotion. Once a design is chosen, the end result is a 3D printable flat pack which is then assembled into the final form with a power supply, Arduino, and servo motors.

A white paper is available online and a demonstration video is embedded below. It’s debatable whether these devices on their own qualify as “robots” since they have no sensors, but as a tool to quickly prototype robot body geometries and gaits it’s an excitingly clever idea.

Perhaps there’s an opportunity to enhance the “3D print, then fold” approach Robogami uses with this concept for making flexible prints out of non-flexible material, or incorporating simple 3D printed circuitry.

Thanks to [Adam] for the tip!


Filed under: robots hacks

Design and 3D Print Robots with Interactive Robogami

Internals of 3D printed “print and fold” robot. [Image source: MIT CSAIL]
Robot design traditionally separates the body geometry from the mechanics of the gait, but they both have a profound effect upon one another. What if you could play with both at once, and crank out useful prototypes cheaply using just about any old 3D printer? That’s where Interactive Robogami comes in. It’s a tool from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) that aims to let people design, simulate, and then build simple robots with a “3D print, then fold” approach. The idea behind the system is partly to take advantage of the rapid prototyping afforded by 3D printers, but mainly it’s to change how the design work is done.

To make a robot, the body geometry and limb design are all done and simulated in the Robogami tool, where different combinations can have a wild effect on locomotion. Once a design is chosen, the end result is a 3D printable flat pack which is then assembled into the final form with a power supply, Arduino, and servo motors.

A white paper is available online and a demonstration video is embedded below. It’s debatable whether these devices on their own qualify as “robots” since they have no sensors, but as a tool to quickly prototype robot body geometries and gaits it’s an excitingly clever idea.

Perhaps there’s an opportunity to enhance the “3D print, then fold” approach Robogami uses with this concept for making flexible prints out of non-flexible material, or incorporating simple 3D printed circuitry.

Thanks to [Adam] for the tip!


Filed under: robots hacks

Weekend Watch: The Madcap Robot World of Junie Genius

Teen maker Junie Genius attempts to solve problems with crazy robot creations.

Read more on MAKE

The post Weekend Watch: The Madcap Robot World of Junie Genius appeared first on Make: DIY Projects and Ideas for Makers.

Weekend Watch: The Madcap Robot World of Junie Genius

Teen maker Junie Genius attempts to solve problems with crazy robot creations.

Read more on MAKE

The post Weekend Watch: The Madcap Robot World of Junie Genius appeared first on Make: DIY Projects and Ideas for Makers.

Assemble a Robot Opponent for Air Hockey

Use JJ Robots' kit and your Android phone to build an air hockey partner who's always game.

Read more on MAKE

The post Assemble a Robot Opponent for Air Hockey appeared first on Make: DIY Projects and Ideas for Makers.

8 Lessons from Building the Strandbeest-Style ClearWalker

Here are a few things Jeremy Cook learned (or relearned) while building a ClearWalker Strandbeest and filming it in action.

Read more on MAKE

The post 8 Lessons from Building the Strandbeest-Style ClearWalker appeared first on Make: DIY Projects and Ideas for Makers.

The ClearWalker is an 8-legged, Arduino-powered Strandbeest

What has eight legs, a tail, and is powered by an Arduino Mega? The ClearWalker, of course!

This Strandbeest-style walker employs two motors, controlled by individual H-bridge relay modules to traverse forwards, backwards, and slowly rotate to one side or another via a hesitating leg motion. You can see how the electronics (including a bunch of LEDs) were integrated into this build in the video below.

If you’d like to try a similar control scheme for your ClearWalker/Strandbeest/treaded vehicle using an Arduino and smartphone, you can find it outlined in this Arduino Project Hub post. For the rest of the steps in this quite involved build, and more rather zany inventions, be sure to check out the “Jeremy Cook’s Projects” YouTube page.

Building a pool-playing robot prototype with Arduino

Building robots can be (relatively) easy if you’d like something to wander around your room and avoid obstacles, but for complicated control tasks, like shooting pool, things need more development. Engineer “Bvarv” has been working on just such a robot, which currently exists as a one-sixth scale model.

Though it’s not currently capable of playing the game, the device uses some interesting tricks, including a frame supported by a pattern of increasing-diameter pieces of wood, a custom bearing made out of slingshot ammunition, and limit switches to control the billiard bot’s orientation.

For this project, Bvarv employed a pair of Arduino Unos and a PixyCam vision system, along with some servos, belts, and gears. While we may still be a few years away from a full-scale robotic opponent, you can check out the entire build over on Instructables and follow along with his progress in the videos below.

This Week in Making: A Robotic Painter, Unboxing Our Latest Issue, and More

Make: did a live unboxing of Make: magazine Volume 57. Also, just a weekly reminder to buy a Mother's Day gift and your Maker Faire tickets.

Read more on MAKE

The post This Week in Making: A Robotic Painter, Unboxing Our Latest Issue, and More appeared first on Make: DIY Projects and Ideas for Makers.