Posts with «gyro» label

A Digital Magic 8-Ball? Signs Point to Yes

[FacelessTech] was recently charmed by one of our prized possessions as a kid — the Magic 8-Ball — and decided to have a go at making a digital version. Though there is no icosahedron or mysterious fluid inside, the end result is still without a doubt quite cool, especially for a project made on a whim with parts on hand.

It’s not just an 8-ball, it also functions as a 6-sided die and a direct decider of yes/no questions. Underneath that Nokia 5110 screen there’s an Arduino Pro Mini and a 3-axis gyro. Almost everything is done through the gyro, including setting the screen contrast when the eight ball is first powered on. As much we as love that aspect, we really like that [FacelessTech] included a GX-12 connector for easy FTDI programming. It’s a tidy, completely open-source build, and there’s even a PCB. What’s not to like? Be sure to check out the video after the break to see it in action.

Believe it or not, this isn’t the smallest Magic 8-Ball build we’ve seen. Have you met the business card version?

[via adafruit]

Building an Electric Scooter That’s Street Legal, Even in Germany

Sometimes a successful project isn’t only about making sure all the electrons are in the right place at the right time, or building something that won’t collapse under its own weight. A lot of projects involve a fair amount of social engineering to be counted as a success, especially those that might result in arrest and incarceration if built as originally planned. Such projects are often referred to as “the fun ones.”

For the past few months, we’ve been following [Bitluni]’s DIY electric scooter build, which had been following the usual trajectory for these things – take a stock unpowered scooter, replace the rear wheel with a 250 W hub motor, add an ESC, battery, and throttle, and away you go. Things took a very interesting turn, however, when his street testing ran afoul of German law, which limits small electric vehicles to a yawn-inducing 6 kph. Unwilling to bore himself to death thus, [Bitluni] found a workaround: vehicles that are only assisted by an electric motor have a much more reasonable speed limit of 25 kph. So he added an Arduino with a gyro and accelerometer module and wrote a program to only power the wheel after the rider has kicked the scooter along a few times – no throttle needed. The motor stops after a bit, needing another push or two to kick it back on. A brake lever kills the motor, as does laying the scooter on its side. It’s quite a clever design, and while it might not keep the Polizei at bay, you can’t say he didn’t try.

[Bitluni] has quite a range of builds, from software-defined television to bad 3D-scanners to precision wine glass whacking. You should check out his stuff.

Thanks for the tip, [Baldpower].

Cheating the Perfect Wheelie With Sensors And Servos

Everyone remembers popping their first wheelie on a bike. It’s an exhilarating moment when you figure out just the right mechanics to get balanced over the rear axle for a few glorious seconds of being the coolest kid on the block. Then gravity takes over, and you either learn how to dismount the bike over the rear wheel, or more likely end up looking at the sky wondering how you got on the ground.

Had only this wheelie cheating device been available way back when, many of us could have avoided that ignominious fate. [Tom Stanton]’s quest for the perfect wheelie led him to the design, which is actually pretty simple. The basic idea is to apply the brakes automatically when the bike reaches the critical angle beyond which one dares not go. The brakes slow the bike, the front wheel comes down, and the brakes release to allow you to continue pumping along with the wheelie. The angle is read by an accelerometer hooked to an Arduino, and the rear brake lever is pulled by a hobby servo. We honestly thought the servo would have nowhere near the torque needed, but in fact it did a fine job. As with most of [Tom]’s build his design process had a lot of fits and starts, but that’s all part of the learning. Was it worth it? We’ll let [Tom] discuss that in the video, but suffice it to say that he never hit the pavement in his field testing, although he appeared to be wheelie-proficient going into the project.

Still, it was an interesting build, and begs the question of how the system could be improved. Might there be some clues in this self-balancing motorized unicycle?

Motorcycle Gyromount Always Delivers Perfect Video

If you’ve ever watched MotoGP (motorcycle) racing, you might have wondered how the camera appears to stay level even while the bike turns left and right, nearly becoming horizontal. Saftari was curious about this himself and, rather than simply answering the question, he built a gyroscopic camera rig that allows the camera […]

Read more on MAKE

The post Motorcycle Gyromount Always Delivers Perfect Video appeared first on Make:.

Motorcycle Gyromount Always Delivers Perfect Video

If you’ve ever watched MotoGP (motorcycle) racing, you might have wondered how the camera appears to stay level even while the bike turns left and right, nearly becoming horizontal. Saftari was curious about this himself and, rather than simply answering the question, he built a gyroscopic camera rig that allows the camera […]

Read more on MAKE

The post Motorcycle Gyromount Always Delivers Perfect Video appeared first on Make:.

Yellow Plane 2 with Inverted V Tail

 

[nickatredbox] keeps up to date with the improvements of his project [yellow plane]. As you can find on this blog, the project is evolving week by week. Let’s see what’s today submission

1200 mm Wing space
280 mm cord
14% Clark Y
Target AUW 1300 Grams

Missing battery and camera box have a design which should weigh 140 grams empty.
The assembly shown below weighs 684 Grams no motor or electronics.
Electronics shown weigh 110 grams ESC Arduino board, Xbee, antenna and Gyro board
Motor & prop another 120 Gram

Here you have a [video]  and there you can follow the project on the [website]

Gyro Angle Calc - using Arduino Uno & IMU Breakout Board GY-521, MPU6050

I'm building a balancing robot using Arduino Uno & a MPU6050 IMU.

I've never programed anything before so naturally I'm struggling a bit.

I've got some code that calculates an angle from the accelerometer reading & I need to do the same for the gyro reading to feed into a complimentary filter. However it's not working & I haven't figured out why. (I've used the lirbray built by Jeff Rowberg and some of his code too).

Please have a look at the code attached & see if you can help me out a little.

 

read more

MPU6050 IMU - Gyro angle calc for balancing robot

Primary image

What does it do?

Balancing RObot

I'm building a balancing robot using Arduino Uno & a MPU6050 IMU.

I've never programed anything before so naturally I'm struggling a bit.

I've got some code that calculates an angle from the accelerometer reading & I need to do the same for the gyro reading to feed into a complimentary filter. However it's not working & I haven't figured out why. (I've used the lirbray built by Jeff Rowberg and some of his code too).

Please have a look at the code attached & see if you can help me out a little. 

 

Cost to build

Embedded video

Finished project

Number

Time to build

Type

URL to more information

Weight

read more

FreeBOT (work in progress)

Project

read more

Let's Make Robots 20 Jul 22:16
3d printing  arduino  flash  freebot  gyro  neo  vb.net