Posts with «led» label

Send HEX values to Arduino

FIVE MINUTE TUTORIAL

Project Description: Sending Hex values to an Arduino UNO


This simple tutorial will show you how to send Hexadecimal values from a computer to an Arduino Uno. The "Processing" programming language will be used to send the HEX values from the computer when a mouse button is pressed. The Arduino will use these values to adjust the brightness of an LED.



 

Learning Objectives


  • To Send Hexadecimal (Hex) values from a computer to the Arduino
  • Trigger an action based on the press of a mouse button
  • Learn to create a simple Computer to Arduino interface
  • Use Arduino's PWM capabilities to adjust brightness of an LED
  • Learn to use Arduino's analogWrite() function
  • Create a simple LED circuit


 

Parts Required:


Fritzing Sketch


The diagram below will show you how to connect an LED to Digital Pin 10 on the Arduino.
Don't forget the 330 ohm resistor !
 


 
 

Arduino Sketch


The latest version of Arduino IDE can be downloaded here.
 
  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/* ==================================================================================================================================================
         Project: 5 min tutorial: Send Hex from computer to Arduino
          Author: Scott C
         Created: 21th June 2015
     Arduino IDE: 1.6.4
         Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html
     Description: Arduino Sketch used to adjust the brightness of an LED based on the values received
                  on the serial port. The LED needs to be connected to a PWM pin. In this sketch
                  Pin 10 is used, however you could use Pin 3, 5, 6, 9, or 11 - if you are using an Arduino Uno.
===================================================================================================================================================== */

byte byteRead; //Variable used to store the byte received on the Serial Port
int ledPin = 10; //LED is connected to Arduino Pin 10. This pin must be PWM capable.

void setup() {
 Serial.begin(9600); //Initialise Serial communication with the computer
 pinMode(ledPin, OUTPUT); //Set Pin 10 as an Output pin
 byteRead = 0;                   //Initialise the byteRead variable to zero.
}

void loop() {
  if(Serial.available()) {
    byteRead = Serial.read(); //Update the byteRead variable with the Hex value received on the Serial COM port.
  }
  
  analogWrite(ledPin, byteRead); //Use PWM to adjust the brightness of the LED. Brightness is determined by the "byteRead" variable.
}


 


 
 

Processing Sketch


The latest version of the Processing IDE can be downloaded here.
 
  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/* ==================================================================================================================================================
         Project: 5 min tutorial: Send Hex from computer to Arduino
          Author: Scott C
         Created: 21th June 2015
  Processing IDE: 2.2.1
         Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html
     Description: Processing Sketch used to send HEX values from computer to Arduino when the mouse is pressed.
                  The alternating values 0xFF and 0x00 are sent to the Arduino Uno to turn an LED on and off.
                  You can send any HEX value from 0x00 to 0xFF. This sketch also shows how to convert Hex strings
                  to Hex numbers.
===================================================================================================================================================== */

import processing.serial.*; //This import statement is required for Serial communication

Serial comPort;                       //comPort is used to write Hex values to the Arduino
boolean toggle = false; //toggle variable is used to control which hex variable to send
String zeroHex = "00"; //This "00" string will be converted to 0x00 and sent to Arduino to turn LED off.
String FFHex = "FF"; //This "FF" string will be converted to 0xFF and sent to Arduino to turn LED on.

void setup(){
    comPort = new Serial(this, Serial.list()[0], 9600); //initialise the COM port for serial communication at a baud rate of 9600.
    delay(2000);                      //this delay allows the com port to initialise properly before initiating any communication.
    background(0); //Start with a black background.
    
}


void draw(){ //the draw() function is necessary for the sketch to compile
    //do nothing here //even though it does nothing.
}


void mousePressed(){ //This function is called when the mouse is pressed within the Processing window.
  toggle = ! toggle;                   //The toggle variable will change back and forth between "true" and "false"
  if(toggle){ //If the toggle variable is TRUE, then send 0xFF to the Arduino
     comPort.write(unhex(FFHex)); //The unhex() function converts the "FF" string to 0xFF
     background(0,0,255); //Change the background colour to blue as a visual indication of a button press.
  } else {
    comPort.write(unhex(zeroHex)); //If the toggle variable is FALSE, then send 0x00 to the Arduino
    background(0); //Change the background colour to black as a visual indication of a button press.
  }
}


 

The Video


 

The tutorial above is a quick demonstration of how to convert Hex strings on your computer and send them to an Arduino. The Arduino can use the values to change the brightness of an LED as shown in this tutorial, however you could use it to modify the speed of a motor, or to pass on commands to another module. Hopefully this short tutorial will help you with your project. Please let me know how it helped you in the comments below.

 
 



If you like this page, please do me a favour and show your appreciation :

 
Visit my ArduinoBasics Google + page.
Follow me on Twitter by looking for ScottC @ArduinoBasics.
I can also be found on Pinterest and Instagram.
Have a look at my videos on my YouTube channel.


 
 
             


 
 



However, if you do not have a google profile...
Feel free to share this page with your friends in any way you see fit.

Visualizing Magnetic Fields In 3D Space

[John] is working on his PhD in experimental earthquake physics, and with that comes all the trials of becoming a PhD; tuning students into the cool stuff in the field, and demonstrating created after 1970 to his advisers. One of the biggest advancements in his line of work in the last 30 or 40 years is all those sensors you can find in your cell phone. The three-axis magnetometer in your phone is easily capable of measuring the Earth’s magnetic field, and this chip only costs a few dollars. To demonstrate this, [John] built a 3D compass to show off the capability of these sensors, and have a pretty light show for the undergrads.

The magnetometer [John] is using is just a simple I2C magnetometer that can be found on Adafruit or Sparkfun. It’s not really anything special, but with a little bit of code, [John] can read the magnetic field strength in the x, y, and z axes.

Having a microcontroller spit out a bunch of numbers related to the local magnetic field just doesn’t seem fun, so [John] picked up two neopixel rings – one inside the other, and set 90 degrees out of plane with each other. This turns his magnetometer and Arduino setup into a real 3D compass. With this device, the local magnetic field can be visualized in the x, y, and z axes. It looks cool, which is great for undergrads, and it’s a great demonstration of what you can do with small, cheap electronic sensors.

[John] put up a screencast of a talk he gave at the American Geophysical Union meeting last year. You can check that out below.


Filed under: Arduino Hacks
Hack a Day 21 Jun 18:00

Embroidered Nyan Cat Brings a Meme to the Real World

Have you ever come across an Internet meme and just thought to yourself, “I have to bring this into the physical world!” Well [0xb3nn] and [Knit Knit] did. They decided to take the classic nyan cat meme and bring it to life.

The frame is 24″ x 36″. Many hours went into the knitting process, but the result obviously turned out very well. The stars include 24 LED sequins to add a sparkling animation effect. These were sewn onto the back of the work using conductive thread. They are bright enough to shine through to the front where needed. These connect back to an Arduino Pro Mini 5V board.

The Arduino is also connected to a capacitive touch sensor. This allows the user to simply place their hand over the nyan cat image to start the animation. No need for physical buttons or switches to take away from the visual design. An Adafruit AudioFX sound board was used to play back a saved nyan cat theme song over a couple of speakers. The source code for this project is available on github. Be sure to watch the demo video below.


Filed under: Arduino Hacks
Hack a Day 10 May 03:00

An Introduction To Individually Addressable LED Matrices

The most fascinating project you can build is something with a bunch of blinky hypnotic LEDs, and the easiest way to build this is with a bunch of individually addressable RGB LEDs. [Ole] has a great introduction to driving RGB LED matrices using only five data pins on a microcontroller.

The one thing that is most often forgotten in a project involving gigantic matrices of RGB LEDs is how to mount them. The enclosure for these LEDs should probably be light and non-conductive. If you’re really clever, each individual LED should be in a light-proof box with a translucent cover on it. [Ole] isn’t doing that here; this matrix is just a bit of wood with some WS2812s glued down to it.

To drive the LEDs, [Ole] is using an Arduino. Even though the WS2812s are individually addressable and only one data pin is needed, [Ole] is using five individual data lines for this matrix. It works okay, and the entire setup can be changed at some point in the future. It’s still a great introduction to individually addressable LED matrices.

If you’d like to see what can be done with a whole bunch of individually addressable LEDs, here’s the FLED that will probably be at our LA meetup in two weeks. There are some crazy engineering challenges and several pounds of solder in the FLED. For the writeup on that, here you go.


Filed under: Arduino Hacks, led hacks
Hack a Day 27 Apr 06:00

Arduino Heart Rate Monitor


Project Description


Heart Rate Monitors are very popular at the moment.
There is something very appealing about watching the pattern of your own heart beat. And once you see it, there is an unstoppable urge to try and control it. This simple project will allow you to visualize your heart beat, and will calculate your heart rate. Keep reading to learn how to create your very own heart rate monitor.


 

Parts Required:


Fritzing Sketch


 

 
 
 

Grove Base Shield to Module Connections


 


 

Arduino Sketch


 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/* =================================================================================================
      Project: Arduino Heart rate monitor
       Author: Scott C
      Created: 21st April 2015
  Arduino IDE: 1.6.2
      Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html
  Description: This is a simple sketch that uses a Grove Ear-clip Heart Rate sensor attached to an Arduino UNO,
               which sends heart rate data to the computer via Serial communication. You can see the raw data
               using the Serial monitor on the Arduino IDE, however, this sketch was specifically
               designed to interface with the matching Processing sketch for a much nicer graphical display.
               NO LIBRARIES REQUIRED.
=================================================================================================== */

#define Heart 2                            //Attach the Grove Ear-clip sensor to digital pin 2.
#define LED 4                              //Attach an LED to digital pin 4

boolean beat = false; /* This "beat" variable is used to control the timing of the Serial communication
                                           so that data is only sent when there is a "change" in digital readings. */

//==SETUP==========================================================================================
void setup() {
  Serial.begin(9600); //Initialise serial communication
  pinMode(Heart, INPUT); //Set digital pin 2 (heart rate sensor pin) as an INPUT
  pinMode(LED, OUTPUT); //Set digital pin 4 (LED) to an OUTPUT
}


//==LOOP============================================================================================
void loop() {
  if(digitalRead(Heart)>0){ //The heart rate sensor will trigger HIGH when there is a heart beat
    if<!beat){><span>//Only send data when it first discovers a heart beat - otherwise it will send a high value multiple times</span><br />      beat=<span>true</span>; <span>//By changing the beat variable to true, it stops further transmissions of the high signal</span><br />      <span>digitalWrite</span>(LED, <span>HIGH</span>); <span>//Turn the LED on </span><br />      <span><b>Serial</b></span>.<span>println</span>(1023); <span>//Send the high value to the computer via Serial communication.</span><br />    }<br />  } <span>else</span> { <span>//If the reading is LOW, </span><br />    <span>if</span>(beat){ <span>//and if this has just changed from HIGH to LOW (first low reading)</span><br />      beat=<span>false</span>; <span>//change the beat variable to false (to stop multiple transmissions)</span><br />      <span>digitalWrite</span>(LED, <span>LOW</span>); <span>//Turn the LED off.</span><br />      <span><b>Serial</b></span>.<span>println</span>(0); <span>//then send a low value to the computer via Serial communication.</span><br />    }<br />  }<br />}</pre> </td> </tr> </table></div></p> <br />  <br />   <br />  <br />  <p> <h4><a href="https://processing.org/download/?processing">Processing Sketch</a></h4> <br />  <div> <table> <tr> <td> <pre> 1<br /> 2<br /> 3<br /> 4<br /> 5<br /> 6<br /> 7<br /> 8<br /> 9<br /> 10<br /> 11<br /> 12<br /> 13<br /> 14<br /> 15<br /> 16<br /> 17<br /> 18<br /> 19<br /> 20<br /> 21<br /> 22<br /> 23<br /> 24<br /> 25<br /> 26<br /> 27<br /> 28<br /> 29<br /> 30<br /> 31<br /> 32<br /> 33<br /> 34<br /> 35<br /> 36<br /> 37<br /> 38<br /> 39<br /> 40<br /> 41<br /> 42<br /> 43<br /> 44<br /> 45<br /> 46<br /> 47<br /> 48<br /> 49<br /> 50<br /> 51<br /> 52<br /> 53<br /> 54<br /> 55<br /> 56<br /> 57<br /> 58<br /> 59<br /> 60<br /> 61<br /> 62<br /> 63<br /> 64<br /> 65<br /> 66<br /> 67<br /> 68<br /> 69<br /> 70<br /> 71<br /> 72<br /> 73<br /> 74<br /> 75<br /> 76<br /> 77<br /> 78<br /> 79<br /> 80<br /> 81<br /> 82<br /> 83<br /> 84<br /> 85<br /> 86<br /> 87<br /> 88<br /> 89<br /> 90<br /> 91<br /> 92<br /> 93<br /> 94<br /> 95<br /> 96<br /> 97<br /> 98<br /> 99<br />100<br />101<br />102<br />103<br />104<br />105<br />106<br />107<br />108<br />109<br />110<br />111<br />112<br />113<br />114<br />115<br />116<br />117<br />118<br />119<br />120<br />121<br />122<br />123<br />124<br />125<br />126<br />127<br />128<br />129<br />130<br />131<br />132<br />133<br />134<br />135<br />136<br />137<br />138<br />139<br />140<br />141<br />142<br />143<br />144<br />145<br />146<br />147<br />148<br />149<br />150<br />151<br />152<br />153<br />154<br />155<br />156<br />157<br />158<br />159<br />160<br />161<br />162<br />163<br />164<br />165<br />166<br />167<br />168<br />169<br />170<br />171<br />172<br />173<br />174<br />175<br />176<br />177<br />178<br />179<br />180<br />181<br />182<br />183<br />184<br />185<br />186<br />187<br />188<br />189<br />190<br />191<br />192<br />193<br />194<br />195<br />196<br />197<br />198<br />199<br />200<br />201<br />202<br />203<br />204<br />205<br />206<br />207<br />208<br />209<br />210<br />211<br />212<br />213<br />214<br /></pre> </td> <td> <pre><br /><span>/* =================================================================================================</span><br /><span>       Project: Arduino Heart rate monitor</span><br /><span>        Author: Scott C</span><br /><span>       Created: 21st April 2015</span><br /><span>Processing IDE: 2.2.1</span><br /><span>       Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html</span><br /><span>   Description: A Grove Ear-clip heart rate sensor allows an Arduino UNO to sense your pulse.</span><br /><span>                The data obtained by the Arduino can then be sent to the computer via Serial communication</span><br /><span>                which is then displayed graphically using this Processing sketch.</span><br /><span>                </span><br /><span>=================================================================================================== */</span><br /><br /><span>import</span> processing.serial.*; <span>// Import the serial library to allow Serial communication with the Arduino</span><br /><br /><span>int</span> numOfRecs = 45; <span>// numOfRecs: The number of rectangles to display across the screen</span><br />Rectangle[] myRecs = <span>new</span> Rectangle[numOfRecs]; <span>// myRecs[]: Is the array of Rectangles. Rectangle is a custom class (programmed within this sketch)</span><br /><br />Serial myPort;                                         <br /><span>String</span> comPortString=<span>"0"</span>; <span>//comPortString: Is used to hold the string received from the Arduino</span><br /><span>float</span> arduinoValue = 0; <span>//arduinoValue: Is the float variable converted from comPortString</span><br /><span>boolean</span> beat = <span>false</span>; <span>// beat: Used to control for multiple high/low signals coming from the Arduino</span><br /><br /><span>int</span> totalTime = 0; <span>// totalTime: Is the variable used to identify the total time between beats</span><br /><span>int</span> lastTime = 0; <span>// lastTime: Is the variable used to remember when the last beat took place</span><br /><span>int</span> beatCounter = 0; <span>// beatCounter: Is used to keep track of the number of beats (in order to calculate the average BPM)</span><br /><span>int</span> totalBeats = 10; <span>// totalBeats: Tells the computer that we want to calculate the average BPM using 10 beats.</span><br /><span>int</span>[] BPM = <span>new</span> <span>int</span>[totalBeats]; <span>// BPM[]: Is the Beat Per Minute (BPM) array - to hold 10 BPM calculations</span><br /><span>int</span> sumBPM = 0; <span>// sumBPM: Is used to sum the BPM[] array values, and is then used to calculate the average BPM.</span><br /><span>int</span> avgBPM = 0; <span>// avgBPM: Is the variable used to hold the average BPM calculated value.</span><br /><br /><span>PFont</span> f, f2; <span>// f & f2 : Are font related variables. Used to store font properties. </span><br /><br /><br /><span>//==SETUP==============================================================================================</span><br /><span>void</span> <span><b>setup</b></span>(){<br />  <span>size</span>(<span>displayWidth</span>,<span>displayHeight</span>); <span>// Set the size of the display to match the monitor width and height</span><br />  <span>smooth</span>(); <span>// Draw all shapes with smooth edges.</span><br />  f = <span>createFont</span>(<span>"Arial"</span>,24); <span>// Initialise the "f" font variable - used for the "calibrating" text displayed at the beginning</span><br />  f2 = <span>createFont</span>(<span>"Arial"</span>,96); <span>// Initialise the "f2" font variable - used for the avgBPM display on screen</span><br />  <br />  <span>for</span>(<span>int</span> i=0; i<numOfRecs; i++){ <span>// Initialise the array of rectangles</span><br />    myRecs[i] = <span>new</span> Rectangle(i, numOfRecs);<br />  }<br />  <br />  <span>for</span>(<span>int</span> i=0; i<totalBeats; i++){ <span>// Initialise the BPM array</span><br />    BPM[i] = 0;<br />  }<br />  <br />  myPort = <span>new</span> Serial(<span>this</span>, Serial.<span>list</span>()[0], 9600); <span>// Start Serial communication with the Arduino using a baud rate of 9600</span><br />  myPort.bufferUntil(<span>'\n'</span>); <span>// Trigger a SerialEvent on new line</span><br />}<br /><br /><br /><span>//==DRAW==============================================================================================</span><br /><span>void</span> <span><b>draw</b></span>(){<br />  <span>background</span>(0); <span>// Set the background to BLACK (this clears the screen each time)</span><br />  drawRecs();                                           <span>// Method call to draw the rectangles on the screen</span><br />  drawBPM();                                            <span>// Method call to draw the avgBPM value to the top right of the screen</span><br />}<br /><br /><br /><span>//==drawRecs==========================================================================================</span><br /><span>void</span> drawRecs(){ <span>// This custom method will draw the rectangles on the screen </span><br />  myRecs[0].setSize(arduinoValue);                      <span>// Set the first rectangle to match arduinoValue; any positive value will start the animation.</span><br />  <span>for</span>(<span>int</span> i=numOfRecs-1; i>0; i--){ <span>// The loop counts backwards for coding efficiency - and is used to draw all of the rectangles to screen</span><br />    myRecs[i].setMult(i);                               <span>// setMulti creates the specific curve pattern. </span><br />    myRecs[i].setRed(avgBPM);                           <span>// The rectangles become more "Red" with higher avgBPM values</span><br />    myRecs[i].setSize(myRecs[i-1].getH());              <span>// The current rectangle size is determined by the height of the rectangle immediately to it's left</span><br />    <span>fill</span>(myRecs[i].getR(),myRecs[i].getG(), myRecs[i].getB()); <span>// Set the colour of this rectangle</span><br />    <span>rect</span>(myRecs[i].getX(), myRecs[i].getY(), myRecs[i].getW(), myRecs[i].getH()); <span>// Draw this rectangle</span><br />  }<br />}<br /><br /><br /><span>//==drawBPM===========================================================================================</span><br /><span>void</span> drawBPM(){ <span>// This custom method is used to calculate the avgBPM and draw it to screen.</span><br />  sumBPM = 0;                                           <span>// Reset the sumBPM variable</span><br />  avgBPM = 0;                                           <span>// Reset the avgBPM variable</span><br />  <span>boolean</span> calibrating = <span>false</span>; <span>// calibrating: this boolean variable is used to control when the avgBPM is displayed to screen</span><br />  <br />  <span>for</span>(<span>int</span> i=1; i<totalBeats; i++){<br />    sumBPM = sumBPM + BPM[i-1];                         <span>// Sum all of the BPM values in the BPM array.</span><br />    <span>if</span>(BPM[i-1]<1){ <span>// If any BPM values are equal to 0, then set the calibrating variable to true. </span><br />      calibrating = <span>true</span>; <span>// This will be used later to display "calibrating" on the screen.</span><br />    }<br />  }<br />  avgBPM = sumBPM/(totalBeats-1);                       <span>// Calculate the average BPM from all BPM values</span><br />                                                        <br />  <span>fill</span>(255); <span>// The text will be displayed as WHITE text</span><br />  <span>if</span>(calibrating){<br />    <span>textFont</span>(f);<br />    <span>text</span>(<span>"Calibrating"</span>, (4*<span>width</span>)/5, (<span>height</span>/5)); <span>// If the calibrating variable is TRUE, then display the word "Calibrating" on screen</span><br />    <span>fill</span>(0); <span>// Change the fill and stroke to black (0) so that other text is "hidden" while calibrating variable is TRUE</span><br />    <span>stroke</span>(0);<br />  } <span>else</span> {<br />    <span>textFont</span>(f2);<br />    <span>text</span>(avgBPM, (4*<span>width</span>)/5, (<span>height</span>/5)); <span>// If the calibrating variable is FALSE, then display the avgBPM variable on screen</span><br />    <span>stroke</span>(255); <span>// Change the stroke to white (255) to show the white line underlying the word BPM.</span><br />  }<br />  <br />   <span>textFont</span>(f);<br />   <span>text</span>(<span>"BPM"</span>, (82*<span>width</span>)/100, (<span>height</span>/11)); <span>// This will display the underlined word "BPM" when calibrating variable is FALSE.</span><br />   <span>line</span>((80*<span>width</span>)/100, (<span>height</span>/10),(88*<span>width</span>)/100, (<span>height</span>/10));<br />   <span>stroke</span>(0);<br />}<br /><br /><br /><span>//==serialEvent===========================================================================================</span><br /><span>void</span> serialEvent(Serial cPort){ <span>// This will be triggered every time a "new line" of data is received from the Arduino</span><br /> comPortString = cPort.readStringUntil(<span>'\n'</span>); <span>// Read this data into the comPortString variable.</span><br /> <span>if</span>(comPortString != <span>null</span>) { <span>// If the comPortString variable is not NULL then</span><br />   comPortString=<span>trim</span>(comPortString); <span>// trim any white space around the text.</span><br />   <span>int</span> i = <span>int</span>(<span>map</span>(<span>Integer</span>.<span>parseInt</span>(comPortString),1,1023,1,<span>height</span>)); <span>// convert the string to an integer, and map the value so that the rectangle will fit within the screen.</span><br />   arduinoValue = <span>float</span>(i); <span>// Convert the integer into a float value.</span><br />   <span>if</span> (!beat){<br />     <span>if</span>(arduinoValue>0){ <span>// When a beat is detected, the "trigger" method is called.</span><br />       trigger(<span>millis</span>()); <span>// millis() creates a timeStamp of when the beat occured.</span><br />       beat=<span>true</span>; <span>// The beat variable is changed to TRUE to register that a beat has been detected.</span><br />     }<br />   }<br />   <span>if</span> (arduinoValue<1){ <span>// When the Arduino value returns back to zero, we will need to change the beat status to FALSE.</span><br />     beat = <span>false</span>;<br />   }<br /> }<br />} <br /><br /><br /><span>//==trigger===========================================================================================</span><br /><span>void</span> trigger(<span>int</span> time){ <span>// This method is used to calculate the Beats per Minute (BPM) and to store the last 10 BPMs into the BPM[] array.</span><br />  totalTime = time - lastTime;                         <span>// totalTime = the current beat time minus the last time there was a beat.</span><br />  lastTime = time;                                     <span>// Set the lastTime variable to the current "time" for the next round of calculations.</span><br />  BPM[beatCounter] = 60000/totalTime;                  <span>// Calculate BPM from the totalTime. 60000 = 1 minute.</span><br />  beatCounter++;                                       <span>// Increment the beatCounter </span><br />  <span>if</span> (beatCounter>totalBeats-1){ <span>// Reset the beatCounter when the total number of BPMs have been stored into the BPM[] array.</span><br />    beatCounter=0;                                     <span>// This allows us to keep the last 10 BPM calculations at all times.</span><br />  }<br />}<br /><br /><br /><span>//==sketchFullScreen==========================================================================================</span><br /><span>boolean</span> sketchFullScreen() { <span>// This puts Processing into Full Screen Mode</span><br /> <span>return</span> <span>true</span>;<br />}<br /><br /><br /><span>//==Rectangle CLASS==================================================================================*********</span><br /><span>class</span> Rectangle{<br />  <span>float</span> xPos, defaultY, yPos, myWidth, myHeight, myMultiplier; <span>// Variables used for drawing rectangles</span><br />  <span>int</span> blueVal, greenVal, redVal; <span>// Variables used for the rectangle colour</span><br />  <br />  Rectangle(<span>int</span> recNum, <span>int</span> nRecs){ <span>// The rectangles are constructed using two variables. The total number of rectangles to be displayed, and the identification of this rectangle (recNum)</span><br />    myWidth = <span>displayWidth</span>/nRecs; <span>// The width of the rectangle is determined by the screen width and the total number of rectangles.</span><br />    xPos = recNum * myWidth;                                      <span>// The x Position of this rectangle is determined by the width of the rectangles (all same) and the rectangle identifier.</span><br />    defaultY=<span>displayHeight</span>/2; <span>// The default Y position of the rectangle is half way down the screen.</span><br />    yPos = defaultY;                                              <span>// yPos is used to adjust the position of the rectangle as the size changes.</span><br />    myHeight = 1;                                                 <span>// The height of the rectangle starts at 1 pixel</span><br />    myMultiplier = 1;                                             <span>// The myMultiplier variable will be used to create the funnel shaped path for the rectangles.</span><br />    redVal = 0;                                                   <span>// The red Value starts off being 0 - but changes with avgBPM. Higher avgBPM means higher redVal</span><br />    <br />    <span>if</span> (recNum>0){ <span>// The blue Value progressively increases with every rectangle (moving to the right of the screen)</span><br />      blueVal = (recNum*255)/nRecs;<br />    } <span>else</span> {<br />      blueVal = 0;<br />    }<br />    greenVal = 255-blueVal;                                       <span>// Initially, the green value is at the opposite end of the spectrum to the blue value.</span><br />  }<br />  <br />  <span>void</span> setSize(<span>float</span> newSize){ <span>// This is used to set the new size of each rectangle </span><br />    myHeight=newSize*myMultiplier;<br />    yPos=defaultY-(newSize/2);<br />  }<br />  <br />  <span>void</span> setMult(<span>int</span> i){ <span>// The multiplier is a function of COS, which means that it varies from 1 to 0.</span><br />    myMultiplier = <span>cos</span>(<span>radians</span>(i)); <span>// You can try other functions to experience different effects.</span><br />  }<br />  <br />  <span>void</span> setRed(<span>int</span> r){<br />    redVal = <span>int</span>(<span>constrain</span>(<span>map</span>(<span>float</span>(r), 60, 100, 0, 255),0,255)); <span>// setRed is used to change the redValue based on the "normal" value for resting BPM (60-100). </span><br />    greenVal = 255 - redVal;                                       <span>// When the avgBPM > 100, redVal will equal 255, and the greenVal will equal 0.</span><br />  }                                                                <span>// When the avgBPM < 60, redVal will equal 0, and greenVal will equal 255.</span><br />  <br />  <span>float</span> getX(){ <span>// get the x Position of the rectangle</span><br />    <span>return</span> xPos;<br />  }<br /> <br />  <span>float</span> getY(){ <span>// get the y Position of the rectangle</span><br />    <span>return</span> yPos;<br />  }<br />  <br />  <span>float</span> getW(){ <span>// get the width of the rectangle</span><br />    <span>return</span> myWidth;<br />  }<br />  <br />  <span>float</span> getH(){ <span>// get the height of the rectangle</span><br />    <span>return</span> myHeight;<br />  }<br />  <br />  <span>float</span> getM(){ <span>// get the Multiplier of the rectangle</span><br />    <span>return</span> myMultiplier;<br />  }<br />  <br />  <span>int</span> getB(){ <span>// get the "blue" component of the rectangle colour</span><br />    <span>return</span> blueVal;<br />  }<br />  <br />  <span>int</span> getR(){ <span>// get the "red" component of the rectangle colour</span><br />    <span>return</span> redVal;<br />  }<br />  <br />  <span>int</span> getG(){ <span>// get the "green" component of the rectangle colour</span><br />    <span>return</span> greenVal;<br />  }<br />}<br /><br /></pre> </td> </tr> </table></div></p> <br />  <br /> <p> <h4>Processing Code Discussion:</h4><br /> </p><p> The Rectangle class was created to store relevant information about each rectangle. By using a custom class, we were able to design our rectangles any way we wanted. These rectangles have properties and methods which allow us to easily control their position, size and colour. By adding some smart functionality to each rectangle, we were able to get the rectangle to automatically position and colour itself based on key values. </p> <p> The Serial library is used to allow communication with the Arduino. In this Processing sketch, the values obtained from the Arduino were converted to floats to allow easy calulations of the beats per minute (BPM). I am aware that I have over-engineered the serialEvent method somewhat, because the Arduino is only really sending two values. I didn't really need to convert the String. But I am happy with the end result, and it does the job I needed it to... </p> <div> <p> <div> <a href="http://4.bp.blogspot.com/-EVTCQ3vkgGc/VTnOarlOWSI/AAAAAAAABdc/MslEU5oirAY/s1600/Complete%2BWorkstation2.jpg"><img src="http://4.bp.blogspot.com/-EVTCQ3vkgGc/VTnOarlOWSI/AAAAAAAABdc/MslEU5oirAY/s1600/Complete%2BWorkstation2.jpg" /> </a> </div> </p> </div> </div><!--separator --><img src="https://images-blogger-opensocial.googleusercontent.com/gadgets/proxy?url=http%3A%2F%2F1.bp.blogspot.com%2F-XQiwNpdqOxk%2FT_rKCzDh4nI%2FAAAAAAAAAQY%2FOfYBljhU6Lk%2Fs1600%2FSeparator.jpg&container=blogger&gadget=a&rewriteMime=image%2F*" /><br /><p> <div> This project is quite simple. I designed it so that you could omit the Processing code if you wanted to. In that scenario, you would only be left with a blinking LED that blinks in time with your pulse. The Processing code takes this project to the next level. It provides a nice animation and calculates the beats per minute (BPM). <br />   <br /> I hope you liked this tutorial. Please feel free to share it, comment or give it a plus one. If you didn't like it, I would still appreciate your constructive feedback. </div> <br />  <div> <p> <!--separator --> <img src="https://images-blogger-opensocial.googleusercontent.com/gadgets/proxy?url=http%3A%2F%2F1.bp.blogspot.com%2F-XQiwNpdqOxk%2FT_rKCzDh4nI%2FAAAAAAAAAQY%2FOfYBljhU6Lk%2Fs1600%2FSeparator.jpg&container=blogger&gadget=a&rewriteMime=image%2F*" /><br /> <br /> </p> </div> </p><p> <div> If you like this page, please do me a favour and show your appreciation : <br /> <br />  <br /> Visit my <a href="https://plus.google.com/u/0/b/107402020974762902161/107402020974762902161/posts">ArduinoBasics Google + page</a>.<br /> Follow me on Twitter by looking for <a href="https://twitter.com/ArduinoBasics">ScottC @ArduinoBasics</a>.<br /> I can also be found on <a href="https://www.pinterest.com/ArduinoBasics/">Pinterest</a> and <a href="https://instagram.com/arduinobasics">Instagram</a>. <br /> Have a look at my videos on my <a href="https://www.youtube.com/user/ScottCMe/videos">YouTube channel</a>.<br /> </div> </p> <br />  <br />  <p> <div> <a href="http://3.bp.blogspot.com/-x_TA-qhOCzM/VTnULXoWhQI/AAAAAAAABds/quh02BWGsec/s1600/Slide1.JPG"><img src="http://3.bp.blogspot.com/-x_TA-qhOCzM/VTnULXoWhQI/AAAAAAAABds/quh02BWGsec/s1600/Slide1.JPG" /></a></div><br /> </p> <br />  <br />  <br />  <div> <p> <!--separator --> <img src="https://images-blogger-opensocial.googleusercontent.com/gadgets/proxy?url=http%3A%2F%2F1.bp.blogspot.com%2F-XQiwNpdqOxk%2FT_rKCzDh4nI%2FAAAAAAAAAQY%2FOfYBljhU6Lk%2Fs1600%2FSeparator.jpg&container=blogger&gadget=a&rewriteMime=image%2F*" /><br /> <br /> </p> </div> <p> However, if you do not have a google profile... <br />Feel free to share this page with your friends in any way you see fit. </p>

Arduino Heart Rate Monitor


Project Description


Heart Rate Monitors are very popular at the moment.
There is something very appealing about watching the pattern of your own heart beat. And once you see it, there is an unstoppable urge to try and control it. This simple project will allow you to visualize your heart beat, and will calculate your heart rate. Keep reading to learn how to create your very own heart rate monitor.


 

Parts Required:


Fritzing Sketch


 

 
 
 

Grove Base Shield to Module Connections


 


 

Arduino Sketch


 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/* =================================================================================================
      Project: Arduino Heart rate monitor
       Author: Scott C
      Created: 21st April 2015
  Arduino IDE: 1.6.2
      Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html
  Description: This is a simple sketch that uses a Grove Ear-clip Heart Rate sensor attached to an Arduino UNO,
               which sends heart rate data to the computer via Serial communication. You can see the raw data
               using the Serial monitor on the Arduino IDE, however, this sketch was specifically
               designed to interface with the matching Processing sketch for a much nicer graphical display.
               NO LIBRARIES REQUIRED.
=================================================================================================== */

#define Heart 2                            //Attach the Grove Ear-clip sensor to digital pin 2.
#define LED 4                              //Attach an LED to digital pin 4

boolean beat = false; /* This "beat" variable is used to control the timing of the Serial communication
                                           so that data is only sent when there is a "change" in digital readings. */

//==SETUP==========================================================================================
void setup() {
  Serial.begin(9600); //Initialise serial communication
  pinMode(Heart, INPUT); //Set digital pin 2 (heart rate sensor pin) as an INPUT
  pinMode(LED, OUTPUT); //Set digital pin 4 (LED) to an OUTPUT
}


//==LOOP============================================================================================
void loop() {
  if(digitalRead(Heart)>0){ //The heart rate sensor will trigger HIGH when there is a heart beat
    if<!beat){><span>//Only send data when it first discovers a heart beat - otherwise it will send a high value multiple times</span><br />      beat=<span>true</span>; <span>//By changing the beat variable to true, it stops further transmissions of the high signal</span><br />      <span>digitalWrite</span>(LED, <span>HIGH</span>); <span>//Turn the LED on </span><br />      <span><b>Serial</b></span>.<span>println</span>(1023); <span>//Send the high value to the computer via Serial communication.</span><br />    }<br />  } <span>else</span> { <span>//If the reading is LOW, </span><br />    <span>if</span>(beat){ <span>//and if this has just changed from HIGH to LOW (first low reading)</span><br />      beat=<span>false</span>; <span>//change the beat variable to false (to stop multiple transmissions)</span><br />      <span>digitalWrite</span>(LED, <span>LOW</span>); <span>//Turn the LED off.</span><br />      <span><b>Serial</b></span>.<span>println</span>(0); <span>//then send a low value to the computer via Serial communication.</span><br />    }<br />  }<br />}</pre> </td> </tr> </table></div></p> <br />  <br />   <br />  <br />  <p> <h4><a href="https://processing.org/download/?processing">Processing Sketch</a></h4> <br />  <div> <table> <tr> <td> <pre> 1<br /> 2<br /> 3<br /> 4<br /> 5<br /> 6<br /> 7<br /> 8<br /> 9<br /> 10<br /> 11<br /> 12<br /> 13<br /> 14<br /> 15<br /> 16<br /> 17<br /> 18<br /> 19<br /> 20<br /> 21<br /> 22<br /> 23<br /> 24<br /> 25<br /> 26<br /> 27<br /> 28<br /> 29<br /> 30<br /> 31<br /> 32<br /> 33<br /> 34<br /> 35<br /> 36<br /> 37<br /> 38<br /> 39<br /> 40<br /> 41<br /> 42<br /> 43<br /> 44<br /> 45<br /> 46<br /> 47<br /> 48<br /> 49<br /> 50<br /> 51<br /> 52<br /> 53<br /> 54<br /> 55<br /> 56<br /> 57<br /> 58<br /> 59<br /> 60<br /> 61<br /> 62<br /> 63<br /> 64<br /> 65<br /> 66<br /> 67<br /> 68<br /> 69<br /> 70<br /> 71<br /> 72<br /> 73<br /> 74<br /> 75<br /> 76<br /> 77<br /> 78<br /> 79<br /> 80<br /> 81<br /> 82<br /> 83<br /> 84<br /> 85<br /> 86<br /> 87<br /> 88<br /> 89<br /> 90<br /> 91<br /> 92<br /> 93<br /> 94<br /> 95<br /> 96<br /> 97<br /> 98<br /> 99<br />100<br />101<br />102<br />103<br />104<br />105<br />106<br />107<br />108<br />109<br />110<br />111<br />112<br />113<br />114<br />115<br />116<br />117<br />118<br />119<br />120<br />121<br />122<br />123<br />124<br />125<br />126<br />127<br />128<br />129<br />130<br />131<br />132<br />133<br />134<br />135<br />136<br />137<br />138<br />139<br />140<br />141<br />142<br />143<br />144<br />145<br />146<br />147<br />148<br />149<br />150<br />151<br />152<br />153<br />154<br />155<br />156<br />157<br />158<br />159<br />160<br />161<br />162<br />163<br />164<br />165<br />166<br />167<br />168<br />169<br />170<br />171<br />172<br />173<br />174<br />175<br />176<br />177<br />178<br />179<br />180<br />181<br />182<br />183<br />184<br />185<br />186<br />187<br />188<br />189<br />190<br />191<br />192<br />193<br />194<br />195<br />196<br />197<br />198<br />199<br />200<br />201<br />202<br />203<br />204<br />205<br />206<br />207<br />208<br />209<br />210<br />211<br />212<br />213<br />214<br /></pre> </td> <td> <pre><br /><span>/* =================================================================================================</span><br /><span>       Project: Arduino Heart rate monitor</span><br /><span>        Author: Scott C</span><br /><span>       Created: 21st April 2015</span><br /><span>Processing IDE: 2.2.1</span><br /><span>       Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html</span><br /><span>   Description: A Grove Ear-clip heart rate sensor allows an Arduino UNO to sense your pulse.</span><br /><span>                The data obtained by the Arduino can then be sent to the computer via Serial communication</span><br /><span>                which is then displayed graphically using this Processing sketch.</span><br /><span>                </span><br /><span>=================================================================================================== */</span><br /><br /><span>import</span> processing.serial.*; <span>// Import the serial library to allow Serial communication with the Arduino</span><br /><br /><span>int</span> numOfRecs = 45; <span>// numOfRecs: The number of rectangles to display across the screen</span><br />Rectangle[] myRecs = <span>new</span> Rectangle[numOfRecs]; <span>// myRecs[]: Is the array of Rectangles. Rectangle is a custom class (programmed within this sketch)</span><br /><br />Serial myPort;                                         <br /><span>String</span> comPortString=<span>"0"</span>; <span>//comPortString: Is used to hold the string received from the Arduino</span><br /><span>float</span> arduinoValue = 0; <span>//arduinoValue: Is the float variable converted from comPortString</span><br /><span>boolean</span> beat = <span>false</span>; <span>// beat: Used to control for multiple high/low signals coming from the Arduino</span><br /><br /><span>int</span> totalTime = 0; <span>// totalTime: Is the variable used to identify the total time between beats</span><br /><span>int</span> lastTime = 0; <span>// lastTime: Is the variable used to remember when the last beat took place</span><br /><span>int</span> beatCounter = 0; <span>// beatCounter: Is used to keep track of the number of beats (in order to calculate the average BPM)</span><br /><span>int</span> totalBeats = 10; <span>// totalBeats: Tells the computer that we want to calculate the average BPM using 10 beats.</span><br /><span>int</span>[] BPM = <span>new</span> <span>int</span>[totalBeats]; <span>// BPM[]: Is the Beat Per Minute (BPM) array - to hold 10 BPM calculations</span><br /><span>int</span> sumBPM = 0; <span>// sumBPM: Is used to sum the BPM[] array values, and is then used to calculate the average BPM.</span><br /><span>int</span> avgBPM = 0; <span>// avgBPM: Is the variable used to hold the average BPM calculated value.</span><br /><br /><span>PFont</span> f, f2; <span>// f & f2 : Are font related variables. Used to store font properties. </span><br /><br /><br /><span>//==SETUP==============================================================================================</span><br /><span>void</span> <span><b>setup</b></span>(){<br />  <span>size</span>(<span>displayWidth</span>,<span>displayHeight</span>); <span>// Set the size of the display to match the monitor width and height</span><br />  <span>smooth</span>(); <span>// Draw all shapes with smooth edges.</span><br />  f = <span>createFont</span>(<span>"Arial"</span>,24); <span>// Initialise the "f" font variable - used for the "calibrating" text displayed at the beginning</span><br />  f2 = <span>createFont</span>(<span>"Arial"</span>,96); <span>// Initialise the "f2" font variable - used for the avgBPM display on screen</span><br />  <br />  <span>for</span>(<span>int</span> i=0; i<numOfRecs; i++){ <span>// Initialise the array of rectangles</span><br />    myRecs[i] = <span>new</span> Rectangle(i, numOfRecs);<br />  }<br />  <br />  <span>for</span>(<span>int</span> i=0; i<totalBeats; i++){ <span>// Initialise the BPM array</span><br />    BPM[i] = 0;<br />  }<br />  <br />  myPort = <span>new</span> Serial(<span>this</span>, Serial.<span>list</span>()[0], 9600); <span>// Start Serial communication with the Arduino using a baud rate of 9600</span><br />  myPort.bufferUntil(<span>'\n'</span>); <span>// Trigger a SerialEvent on new line</span><br />}<br /><br /><br /><span>//==DRAW==============================================================================================</span><br /><span>void</span> <span><b>draw</b></span>(){<br />  <span>background</span>(0); <span>// Set the background to BLACK (this clears the screen each time)</span><br />  drawRecs();                                           <span>// Method call to draw the rectangles on the screen</span><br />  drawBPM();                                            <span>// Method call to draw the avgBPM value to the top right of the screen</span><br />}<br /><br /><br /><span>//==drawRecs==========================================================================================</span><br /><span>void</span> drawRecs(){ <span>// This custom method will draw the rectangles on the screen </span><br />  myRecs[0].setSize(arduinoValue);                      <span>// Set the first rectangle to match arduinoValue; any positive value will start the animation.</span><br />  <span>for</span>(<span>int</span> i=numOfRecs-1; i>0; i--){ <span>// The loop counts backwards for coding efficiency - and is used to draw all of the rectangles to screen</span><br />    myRecs[i].setMult(i);                               <span>// setMulti creates the specific curve pattern. </span><br />    myRecs[i].setRed(avgBPM);                           <span>// The rectangles become more "Red" with higher avgBPM values</span><br />    myRecs[i].setSize(myRecs[i-1].getH());              <span>// The current rectangle size is determined by the height of the rectangle immediately to it's left</span><br />    <span>fill</span>(myRecs[i].getR(),myRecs[i].getG(), myRecs[i].getB()); <span>// Set the colour of this rectangle</span><br />    <span>rect</span>(myRecs[i].getX(), myRecs[i].getY(), myRecs[i].getW(), myRecs[i].getH()); <span>// Draw this rectangle</span><br />  }<br />}<br /><br /><br /><span>//==drawBPM===========================================================================================</span><br /><span>void</span> drawBPM(){ <span>// This custom method is used to calculate the avgBPM and draw it to screen.</span><br />  sumBPM = 0;                                           <span>// Reset the sumBPM variable</span><br />  avgBPM = 0;                                           <span>// Reset the avgBPM variable</span><br />  <span>boolean</span> calibrating = <span>false</span>; <span>// calibrating: this boolean variable is used to control when the avgBPM is displayed to screen</span><br />  <br />  <span>for</span>(<span>int</span> i=1; i<totalBeats; i++){<br />    sumBPM = sumBPM + BPM[i-1];                         <span>// Sum all of the BPM values in the BPM array.</span><br />    <span>if</span>(BPM[i-1]<1){ <span>// If any BPM values are equal to 0, then set the calibrating variable to true. </span><br />      calibrating = <span>true</span>; <span>// This will be used later to display "calibrating" on the screen.</span><br />    }<br />  }<br />  avgBPM = sumBPM/(totalBeats-1);                       <span>// Calculate the average BPM from all BPM values</span><br />                                                        <br />  <span>fill</span>(255); <span>// The text will be displayed as WHITE text</span><br />  <span>if</span>(calibrating){<br />    <span>textFont</span>(f);<br />    <span>text</span>(<span>"Calibrating"</span>, (4*<span>width</span>)/5, (<span>height</span>/5)); <span>// If the calibrating variable is TRUE, then display the word "Calibrating" on screen</span><br />    <span>fill</span>(0); <span>// Change the fill and stroke to black (0) so that other text is "hidden" while calibrating variable is TRUE</span><br />    <span>stroke</span>(0);<br />  } <span>else</span> {<br />    <span>textFont</span>(f2);<br />    <span>text</span>(avgBPM, (4*<span>width</span>)/5, (<span>height</span>/5)); <span>// If the calibrating variable is FALSE, then display the avgBPM variable on screen</span><br />    <span>stroke</span>(255); <span>// Change the stroke to white (255) to show the white line underlying the word BPM.</span><br />  }<br />  <br />   <span>textFont</span>(f);<br />   <span>text</span>(<span>"BPM"</span>, (82*<span>width</span>)/100, (<span>height</span>/11)); <span>// This will display the underlined word "BPM" when calibrating variable is FALSE.</span><br />   <span>line</span>((80*<span>width</span>)/100, (<span>height</span>/10),(88*<span>width</span>)/100, (<span>height</span>/10));<br />   <span>stroke</span>(0);<br />}<br /><br /><br /><span>//==serialEvent===========================================================================================</span><br /><span>void</span> serialEvent(Serial cPort){ <span>// This will be triggered every time a "new line" of data is received from the Arduino</span><br /> comPortString = cPort.readStringUntil(<span>'\n'</span>); <span>// Read this data into the comPortString variable.</span><br /> <span>if</span>(comPortString != <span>null</span>) { <span>// If the comPortString variable is not NULL then</span><br />   comPortString=<span>trim</span>(comPortString); <span>// trim any white space around the text.</span><br />   <span>int</span> i = <span>int</span>(<span>map</span>(<span>Integer</span>.<span>parseInt</span>(comPortString),1,1023,1,<span>height</span>)); <span>// convert the string to an integer, and map the value so that the rectangle will fit within the screen.</span><br />   arduinoValue = <span>float</span>(i); <span>// Convert the integer into a float value.</span><br />   <span>if</span> (!beat){<br />     <span>if</span>(arduinoValue>0){ <span>// When a beat is detected, the "trigger" method is called.</span><br />       trigger(<span>millis</span>()); <span>// millis() creates a timeStamp of when the beat occured.</span><br />       beat=<span>true</span>; <span>// The beat variable is changed to TRUE to register that a beat has been detected.</span><br />     }<br />   }<br />   <span>if</span> (arduinoValue<1){ <span>// When the Arduino value returns back to zero, we will need to change the beat status to FALSE.</span><br />     beat = <span>false</span>;<br />   }<br /> }<br />} <br /><br /><br /><span>//==trigger===========================================================================================</span><br /><span>void</span> trigger(<span>int</span> time){ <span>// This method is used to calculate the Beats per Minute (BPM) and to store the last 10 BPMs into the BPM[] array.</span><br />  totalTime = time - lastTime;                         <span>// totalTime = the current beat time minus the last time there was a beat.</span><br />  lastTime = time;                                     <span>// Set the lastTime variable to the current "time" for the next round of calculations.</span><br />  BPM[beatCounter] = 60000/totalTime;                  <span>// Calculate BPM from the totalTime. 60000 = 1 minute.</span><br />  beatCounter++;                                       <span>// Increment the beatCounter </span><br />  <span>if</span> (beatCounter>totalBeats-1){ <span>// Reset the beatCounter when the total number of BPMs have been stored into the BPM[] array.</span><br />    beatCounter=0;                                     <span>// This allows us to keep the last 10 BPM calculations at all times.</span><br />  }<br />}<br /><br /><br /><span>//==sketchFullScreen==========================================================================================</span><br /><span>boolean</span> sketchFullScreen() { <span>// This puts Processing into Full Screen Mode</span><br /> <span>return</span> <span>true</span>;<br />}<br /><br /><br /><span>//==Rectangle CLASS==================================================================================*********</span><br /><span>class</span> Rectangle{<br />  <span>float</span> xPos, defaultY, yPos, myWidth, myHeight, myMultiplier; <span>// Variables used for drawing rectangles</span><br />  <span>int</span> blueVal, greenVal, redVal; <span>// Variables used for the rectangle colour</span><br />  <br />  Rectangle(<span>int</span> recNum, <span>int</span> nRecs){ <span>// The rectangles are constructed using two variables. The total number of rectangles to be displayed, and the identification of this rectangle (recNum)</span><br />    myWidth = <span>displayWidth</span>/nRecs; <span>// The width of the rectangle is determined by the screen width and the total number of rectangles.</span><br />    xPos = recNum * myWidth;                                      <span>// The x Position of this rectangle is determined by the width of the rectangles (all same) and the rectangle identifier.</span><br />    defaultY=<span>displayHeight</span>/2; <span>// The default Y position of the rectangle is half way down the screen.</span><br />    yPos = defaultY;                                              <span>// yPos is used to adjust the position of the rectangle as the size changes.</span><br />    myHeight = 1;                                                 <span>// The height of the rectangle starts at 1 pixel</span><br />    myMultiplier = 1;                                             <span>// The myMultiplier variable will be used to create the funnel shaped path for the rectangles.</span><br />    redVal = 0;                                                   <span>// The red Value starts off being 0 - but changes with avgBPM. Higher avgBPM means higher redVal</span><br />    <br />    <span>if</span> (recNum>0){ <span>// The blue Value progressively increases with every rectangle (moving to the right of the screen)</span><br />      blueVal = (recNum*255)/nRecs;<br />    } <span>else</span> {<br />      blueVal = 0;<br />    }<br />    greenVal = 255-blueVal;                                       <span>// Initially, the green value is at the opposite end of the spectrum to the blue value.</span><br />  }<br />  <br />  <span>void</span> setSize(<span>float</span> newSize){ <span>// This is used to set the new size of each rectangle </span><br />    myHeight=newSize*myMultiplier;<br />    yPos=defaultY-(newSize/2);<br />  }<br />  <br />  <span>void</span> setMult(<span>int</span> i){ <span>// The multiplier is a function of COS, which means that it varies from 1 to 0.</span><br />    myMultiplier = <span>cos</span>(<span>radians</span>(i)); <span>// You can try other functions to experience different effects.</span><br />  }<br />  <br />  <span>void</span> setRed(<span>int</span> r){<br />    redVal = <span>int</span>(<span>constrain</span>(<span>map</span>(<span>float</span>(r), 60, 100, 0, 255),0,255)); <span>// setRed is used to change the redValue based on the "normal" value for resting BPM (60-100). </span><br />    greenVal = 255 - redVal;                                       <span>// When the avgBPM > 100, redVal will equal 255, and the greenVal will equal 0.</span><br />  }                                                                <span>// When the avgBPM < 60, redVal will equal 0, and greenVal will equal 255.</span><br />  <br />  <span>float</span> getX(){ <span>// get the x Position of the rectangle</span><br />    <span>return</span> xPos;<br />  }<br /> <br />  <span>float</span> getY(){ <span>// get the y Position of the rectangle</span><br />    <span>return</span> yPos;<br />  }<br />  <br />  <span>float</span> getW(){ <span>// get the width of the rectangle</span><br />    <span>return</span> myWidth;<br />  }<br />  <br />  <span>float</span> getH(){ <span>// get the height of the rectangle</span><br />    <span>return</span> myHeight;<br />  }<br />  <br />  <span>float</span> getM(){ <span>// get the Multiplier of the rectangle</span><br />    <span>return</span> myMultiplier;<br />  }<br />  <br />  <span>int</span> getB(){ <span>// get the "blue" component of the rectangle colour</span><br />    <span>return</span> blueVal;<br />  }<br />  <br />  <span>int</span> getR(){ <span>// get the "red" component of the rectangle colour</span><br />    <span>return</span> redVal;<br />  }<br />  <br />  <span>int</span> getG(){ <span>// get the "green" component of the rectangle colour</span><br />    <span>return</span> greenVal;<br />  }<br />}<br /><br /></pre> </td> </tr> </table></div></p> <br />  <br /> <p> <h4>Processing Code Discussion:</h4><br /> </p><p> The Rectangle class was created to store relevant information about each rectangle. By using a custom class, we were able to design our rectangles any way we wanted. These rectangles have properties and methods which allow us to easily control their position, size and colour. By adding some smart functionality to each rectangle, we were able to get the rectangle to automatically position and colour itself based on key values. </p> <p> The Serial library is used to allow communication with the Arduino. In this Processing sketch, the values obtained from the Arduino were converted to floats to allow easy calulations of the beats per minute (BPM). I am aware that I have over-engineered the serialEvent method somewhat, because the Arduino is only really sending two values. I didn't really need to convert the String. But I am happy with the end result, and it does the job I needed it to... </p> <div> <p> <div> <a href="http://4.bp.blogspot.com/-EVTCQ3vkgGc/VTnOarlOWSI/AAAAAAAABdc/MslEU5oirAY/s1600/Complete%2BWorkstation2.jpg"><img src="http://4.bp.blogspot.com/-EVTCQ3vkgGc/VTnOarlOWSI/AAAAAAAABdc/MslEU5oirAY/s1600/Complete%2BWorkstation2.jpg" /> </a> </div> </p> </div> </div><!--separator --><img src="https://images-blogger-opensocial.googleusercontent.com/gadgets/proxy?url=http%3A%2F%2F1.bp.blogspot.com%2F-XQiwNpdqOxk%2FT_rKCzDh4nI%2FAAAAAAAAAQY%2FOfYBljhU6Lk%2Fs1600%2FSeparator.jpg&container=blogger&gadget=a&rewriteMime=image%2F*" /><br /><p> <div> This project is quite simple. I designed it so that you could omit the Processing code if you wanted to. In that scenario, you would only be left with a blinking LED that blinks in time with your pulse. The Processing code takes this project to the next level. It provides a nice animation and calculates the beats per minute (BPM). <br />   <br /> I hope you liked this tutorial. Please feel free to share it, comment or give it a plus one. If you didn't like it, I would still appreciate your constructive feedback. </div> <br />  <div> <p> <!--separator --> <img src="https://images-blogger-opensocial.googleusercontent.com/gadgets/proxy?url=http%3A%2F%2F1.bp.blogspot.com%2F-XQiwNpdqOxk%2FT_rKCzDh4nI%2FAAAAAAAAAQY%2FOfYBljhU6Lk%2Fs1600%2FSeparator.jpg&container=blogger&gadget=a&rewriteMime=image%2F*" /><br /> <br /> </p> </div> </p><p> <div> If you like this page, please do me a favour and show your appreciation : <br /> <br />  <br /> Visit my <a href="https://plus.google.com/u/0/b/107402020974762902161/107402020974762902161/posts">ArduinoBasics Google + page</a>.<br /> Follow me on Twitter by looking for <a href="https://twitter.com/ArduinoBasics">ScottC @ArduinoBasics</a>.<br /> I can also be found on <a href="https://www.pinterest.com/ArduinoBasics/">Pinterest</a> and <a href="https://instagram.com/arduinobasics">Instagram</a>. <br /> Have a look at my videos on my <a href="https://www.youtube.com/user/ScottCMe/videos">YouTube channel</a>.<br /> </div> </p> <br />  <br />  <p> <div> <a href="http://3.bp.blogspot.com/-x_TA-qhOCzM/VTnULXoWhQI/AAAAAAAABds/quh02BWGsec/s1600/Slide1.JPG"><img src="http://3.bp.blogspot.com/-x_TA-qhOCzM/VTnULXoWhQI/AAAAAAAABds/quh02BWGsec/s1600/Slide1.JPG" /></a></div><br /> </p> <br />  <br />  <br />  <div> <p> <!--separator --> <img src="https://images-blogger-opensocial.googleusercontent.com/gadgets/proxy?url=http%3A%2F%2F1.bp.blogspot.com%2F-XQiwNpdqOxk%2FT_rKCzDh4nI%2FAAAAAAAAAQY%2FOfYBljhU6Lk%2Fs1600%2FSeparator.jpg&container=blogger&gadget=a&rewriteMime=image%2F*" /><br /> <br /> </p> </div> <p> However, if you do not have a google profile... <br />Feel free to share this page with your friends in any way you see fit. </p>

Arduino BeatBox

Create your very own Arduino BeatBox !

Home-made capacitive touch sensors are used to trigger the MP3 drum sounds stored on the Grove Serial MP3 player. I have used a number of tricks to get the most out of this module, and I was quite impressed on how well it did. Over 130 sounds were loaded onto the SDHC card. Most were drum sounds, but I added some farm animal noises to provide an extra element of surprise and entertainment. You can put any sounds you want on the module and play them back quickly. We'll put the Grove Serial MP3 module through it's paces and make it into a neat little BeatBox !!


Key learning objectives

  • How to make your own beatbox
  • How to make capacitive drum pad sensors without using resistors
  • How to speed up Arduino's Analog readings for better performance
  • How to generate random numbers on your Arduino


Parts Required:

Making the drum pads


 
 

Fritzing Sketch


 


 
 

Grove Connections


 


 
 

Grove Connections (without base shield)


 


 
 

Arduino Sketch


 
  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

/* =================================================================================================
      Project: Arduino Beatbox
       Author: Scott C
      Created: 9th April 2015
  Arduino IDE: 1.6.2
      Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html
  Description: This project uses home made capacitive sensors to trigger over 130 MP3 sounds
               on the Grove Serial MP3 player. 
               
               The ADCTouch library is used to eliminate the resistors from the Capacitive sensing circuit. 
               The code used for capacitive sensing was adapted from the ADCTouch library example sketches. 
               You can find the ADCTouch library and relevant example code here:
               http://playground.arduino.cc/Code/ADCTouch
               
               "Advanced Arduino ADC" is used to improve the analogRead() speed, and enhance the
               drum pad or capacitive sensor response time. The Advanced Arduino ADC code 
               was adapted from this site:
               http://www.microsmart.co.za/technical/2014/03/01/advanced-arduino-adc/
               
               
=================================================================================================== */
  #include <ADCTouch.h>
  #include <SoftwareSerial.h>
  
  
  //Global variables
  //===================================================================================================
  int potPin = A4; //Grove Sliding potentiometer is connected to Analog Pin 4
  int potVal = 0;
  byte mp3Vol = 0; //Variable used to control the volume of the MP3 player
  byte oldVol = 0;
  
  int buttonPin = 5; //Grove Button is connected to Digital Pin 5
  int buttonStatus = 0;
  
  byte SongNum[4] = {0x01,0x02,0x03,0x04}; //The first 4 songs will be assigned to the drum pads upon initialisation
  byte numOfSongs = 130; //Total number of MP3 songs/sounds loaded onto the SDHC card
  
  long randNumber; //Variable used to hold the random number - used to randomise the sounds.
  
  int ledState[4]; //Used to keep track of the status of all LEDs (on or off)
  int counter = 0;
  
  SoftwareSerial mp3(3, 4); // The Grove MP3 Player is connected to Arduino digital Pin 3 and 4 (Serial communication)
       
  int ref0, ref1, ref2, ref3; //reference values to remove offset
  int threshold = 100;
      
  // Define the ADC prescalers
  const unsigned char PS_64 = (1 << ADPS2) | (1 << ADPS1);
  const unsigned char PS_128 = (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);
  
  
  
  //Setup()
  //===================================================================================================
  void setup(){
    //Initialise the Grove MP3 Module
    delay(2500); //Allow the MP3 module to power up
    mp3.begin(9600); //Begin Serial communication with the MP3 module
    setPlayMode(0x00);                        //0x00 = Single song - played once ie. not repeated. (default)
    
    //Define the Grove Button as an INPUT
    pinMode(buttonPin, INPUT);
    
    //Define the 4 LED Pins as OUTPUTs
    pinMode(8, OUTPUT); //Green LED
    pinMode(9, OUTPUT); //Blue LED
    pinMode(10, OUTPUT); //Red LED
    pinMode(11, OUTPUT); //Yellow LED
    
    //Make sure each LED is OFF, and store the state of the LED into a variable.
    for(int i=8;i<12;i++){
      digitalWrite(i, LOW);
      ledState[i-8]=0;
    } 
    
    //Double our clock speed from 125 kHz to 250 kHz
    ADCSRA &= ~PS_128;   // set up the ADC
    ADCSRA |= PS_64;    // set our own prescaler to 64
    
    //Create reference values to account for the capacitance of each pad.
    ref0 = ADCTouch.read(A0, 500);
    ref1 = ADCTouch.read(A1, 500); //Take 500 readings
    ref2 = ADCTouch.read(A2, 500);
    ref3 = ADCTouch.read(A3, 500);
    
     //This helps to randomise the drum pads.
     randomSeed(analogRead(0));
  }
  
  
  
  // Loop()
  //===================================================================================================
  void loop(){
     
    //Take a reading from the Grove Sliding Potentiometer, and set volume accordingly
    potVal = analogRead(potPin);
    mp3Vol = map(potVal, 0, 1023, 0,31); // Convert the potentometer reading (0 - 1023) to fit within the MP3 player's Volume range (0 - 31)
    if((mp3Vol>(oldVol+1))|(mp3Vol<(oldVol-1))){ // Only make a change to the Volume on the Grove MP3 player when the potentiometer value changes
      oldVol = mp3Vol;
      setVolume(mp3Vol);
      delay(10); // This delay is necessary with Serial communication to MP3 player
    }
    
    //Take a reading from the Pin attached to the Grove Button. If pressed, randomise the MP3 songs/sounds for each drum pad, and make the LEDs blink randomly.
    buttonStatus = digitalRead(buttonPin);
    if(buttonStatus==HIGH){
      SongNum[0]=randomSongChooser(1, 30);
      SongNum[1]=randomSongChooser(31, 60);
      SongNum[2]=randomSongChooser(61, 86);
      SongNum[3]=randomSongChooser(87, (int)numOfSongs);
      randomLEDBlink();
    }
    
    //Get the capacitive readings from each drum pad: 50 readings are taken from each pad. (default is 100)
    int value0 = ADCTouch.read(A0,50); // Green drum pad
    int value1 = ADCTouch.read(A1,50); // Blue drum pad
    int value2 = ADCTouch.read(A2,50); // Red drum pad
    int value3 = ADCTouch.read(A3,50); // Yellow drum pad
    
    //Remove the offset to account for the baseline capacitance of each pad.
    value0 -= ref0;       
    value1 -= ref1;
    value2 -= ref2;
    value3 -= ref3;
    
    
    //If any of the values exceed the designated threshold, then play the song/sound associated with that drum pad.
    //The associated LED will stay on for the whole time the drum pad is pressed, providing the value remains above the threshold.
    //The LED will turn off when the pad is not being touched or pressed.
    if(value0>threshold){
      digitalWrite(8, HIGH);
      playSong(00,SongNum[0]);
    }else{
      digitalWrite(8,LOW);
    }
    
    if(value1>threshold){
      digitalWrite(9, HIGH);
      playSong(00,SongNum[1]);
    }else{
      digitalWrite(9,LOW);
    }
    
    if(value2>threshold){
      digitalWrite(10, HIGH);
      playSong(00,SongNum[2]);
    }else{
      digitalWrite(10,LOW);
    }
    
    if(value3>threshold){
      digitalWrite(11, HIGH);
      playSong(00,SongNum[3]);
    }else{
      digitalWrite(11,LOW);
    }
  }
      
   
  // writeToMP3:
  // a generic function that simplifies each of the methods used to control the Grove MP3 Player
  //===================================================================================================
  void writeToMP3(byte MsgLEN, byte A, byte B, byte C, byte D, byte E, byte F){
    byte codeMsg[] = {MsgLEN, A,B,C,D,E,F};
    mp3.write(0x7E); //Start Code for every command = 0x7E
    for(byte i = 0; i<MsgLEN+1; i++){
      mp3.write(codeMsg[i]); //Send the rest of the command to the GROVE MP3 player
    }
  }
  
  
  //setPlayMode: defines how each song is to be played
  //===================================================================================================
  void setPlayMode(byte playMode){
    /* playMode options:
          0x00 = Single song - played only once ie. not repeated.  (default)
          0x01 = Single song - cycled ie. repeats over and over.
          0x02 = All songs - cycled 
          0x03 = play songs randomly                                           */
    writeToMP3(0x03, 0xA9, playMode, 0x7E, 0x00, 0x00, 0x00);  
  }
  
  
  //playSong: tells the Grove MP3 player to play the song/sound, and also which song/sound to play
  //===================================================================================================
  void playSong(byte songHbyte, byte songLbyte){
    writeToMP3(0x04, 0xA0, songHbyte, songLbyte, 0x7E, 0x00, 0x00);            
    delay(100);
  }
  
  
  //setVolume: changes the Grove MP3 player's volume to the designated level (0 to 31)
  //===================================================================================================
  void setVolume(byte Volume){
    byte tempVol = constrain(Volume, 0, 31); //Volume range = 00 (muted) to 31 (max volume)
    writeToMP3(0x03, 0xA7, tempVol, 0x7E, 0x00, 0x00, 0x00); 
  }
  
  
  //randomSongChooser: chooses a random song to play. The range of songs to choose from
  //is limited and defined by the startSong and endSong parameters.
  //===================================================================================================
  byte randomSongChooser(int startSong, int endSong){
    randNumber = random(startSong, endSong);
    return((byte) randNumber);
  }
  
  
  //randomLEDBlink: makes each LED blink randomly. The LEDs are attached to digital pins 8 to 12.
  //===================================================================================================
  void randomLEDBlink(){
   counter=8;
   for(int i=0; i<40; i++){
     int x = constrain((int)random(8,12),8,12);
     toggleLED(x);
     delay(random(50,100-i));
   }
     
    for(int i=8;i<12;i++){
      digitalWrite(i, HIGH);
    }
    delay(1000);
    for(int i=8;i<12;i++){
      digitalWrite(i, LOW);
      ledState[i-8]=0;
    }
  }
  
  
  //toggleLED: is used by the randomLEDBlink method to turn each LED on and off (randomly).
  //===================================================================================================
  void toggleLED(int pinNum){
    ledState[pinNum-8]= !ledState[pinNum-8];
    digitalWrite(pinNum, ledState[pinNum-8]);
  }


 

Arduino Code Discussion

You can see from the Arduino code above, that it uses the ADCTouch library. This library was chosen over the Capacitive Sensing Library to eliminate the need for a high value resistor which are commonly found in Capacitive Sensing projects).
 
To increase the speed of the Analog readings, I utilised one of the "Advanced Arduino ADC" techniques described by Guy van den Berg on this Microsmart website.
 
The readings are increased by modifying the Arduino's ADC clock speed from 125kHz to 250 kHz. I did notice an overall better response time with this modification. However, the Grove Serial MP3 player is limited by it's inability to play more than one song or sound at a time. This means that if you hit another drum pad while the current sound is playing, it will stop playing the current sound, and then play the selected sound. The speed at which it can perform this task was quite impressive. In fact it was much better than I thought it would be. But if you are looking for polyphonic playability, you will be dissapointed.
 
This Serial MP3 module makes use of a high quality MP3 audio chip known as the "WT5001". Therefore, you should be able to get some additional features and functionality from this document. Plus you may find some extra useful info from the Seeedstudio wiki. I have re-used some code from the Arduino Boombox tutorial... you will find extra Grove Serial MP3 functions on that page.
 
I will warn you... the Grove Serial MP3 player can play WAV files, however for some reason it would not play many of the sound files in this format. Once the sounds were converted to the MP3 format, I did not look back. So if you decide to take on this project, make sure your sound files are in MP3 format, you'll have a much better outcome.
 
I decided to introduce a random sound selection for each drum pad to extend the novelty of this instrument, which meant that I had to come up with a fancy way to illuminate the LEDs. I demonstrated some of my other LED sequences on my instagram account. I sometimes use instagram to show my work in progress.
 
Have a look at the video below to see this project in action, and putting the Grove Serial MP3 player through it's paces.
 

The Video


 


First there was the Arduino Boombox, and now we have the Arduino Beatbox..... who knows what will come next !
 
Whenever I create a new project, I like to improve my Arduino knowledge. Sometimes it takes me into some rather complicated topics. There is a lot I do not know about Arduino, but I am enjoying the journey. I hope you are too !! Please Google plus one this post if it helped you in any way. These tutorials are free, which means I survive on feedback and plus ones... all you have to do is just scroll a little bit more and click that button :)

 
 



If you like this page, please do me a favour and show your appreciation :

 
Visit my ArduinoBasics Google + page.
Follow me on Twitter by looking for ScottC @ArduinoBasics.
I can also be found on Pinterest and Instagram.
Have a look at my videos on my YouTube channel.


 
 

 
 
 



However, if you do not have a google profile...
Feel free to share this page with your friends in any way you see fit.

Arduino BeatBox

Create your very own Arduino BeatBox !

Home-made capacitive touch sensors are used to trigger the MP3 drum sounds stored on the Grove Serial MP3 player. I have used a number of tricks to get the most out of this module, and I was quite impressed on how well it did. Over 130 sounds were loaded onto the SDHC card. Most were drum sounds, but I added some farm animal noises to provide an extra element of surprise and entertainment. You can put any sounds you want on the module and play them back quickly. We'll put the Grove Serial MP3 module through it's paces and make it into a neat little BeatBox !!


Key learning objectives

  • How to make your own beatbox
  • How to make capacitive drum pad sensors without using resistors
  • How to speed up Arduino's Analog readings for better performance
  • How to generate random numbers on your Arduino


Parts Required:

Making the drum pads


 
 

Fritzing Sketch


 


 
 

Grove Connections


 


 
 

Grove Connections (without base shield)


 


 
 

Arduino Sketch


 
  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

/* =================================================================================================
      Project: Arduino Beatbox
       Author: Scott C
      Created: 9th April 2015
  Arduino IDE: 1.6.2
      Website: http://arduinobasics.blogspot.com/p/arduino-basics-projects-page.html
  Description: This project uses home made capacitive sensors to trigger over 130 MP3 sounds
               on the Grove Serial MP3 player. 
               
               The ADCTouch library is used to eliminate the resistors from the Capacitive sensing circuit. 
               The code used for capacitive sensing was adapted from the ADCTouch library example sketches. 
               You can find the ADCTouch library and relevant example code here:
               http://playground.arduino.cc/Code/ADCTouch
               
               "Advanced Arduino ADC" is used to improve the analogRead() speed, and enhance the
               drum pad or capacitive sensor response time. The Advanced Arduino ADC code 
               was adapted from this site:
               http://www.microsmart.co.za/technical/2014/03/01/advanced-arduino-adc/
               
               
=================================================================================================== */
  #include <ADCTouch.h>
  #include <SoftwareSerial.h>
  
  
  //Global variables
  //===================================================================================================
  int potPin = A4; //Grove Sliding potentiometer is connected to Analog Pin 4
  int potVal = 0;
  byte mp3Vol = 0; //Variable used to control the volume of the MP3 player
  byte oldVol = 0;
  
  int buttonPin = 5; //Grove Button is connected to Digital Pin 5
  int buttonStatus = 0;
  
  byte SongNum[4] = {0x01,0x02,0x03,0x04}; //The first 4 songs will be assigned to the drum pads upon initialisation
  byte numOfSongs = 130; //Total number of MP3 songs/sounds loaded onto the SDHC card
  
  long randNumber; //Variable used to hold the random number - used to randomise the sounds.
  
  int ledState[4]; //Used to keep track of the status of all LEDs (on or off)
  int counter = 0;
  
  SoftwareSerial mp3(3, 4); // The Grove MP3 Player is connected to Arduino digital Pin 3 and 4 (Serial communication)
       
  int ref0, ref1, ref2, ref3; //reference values to remove offset
  int threshold = 100;
      
  // Define the ADC prescalers
  const unsigned char PS_64 = (1 << ADPS2) | (1 << ADPS1);
  const unsigned char PS_128 = (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);
  
  
  
  //Setup()
  //===================================================================================================
  void setup(){
    //Initialise the Grove MP3 Module
    delay(2500); //Allow the MP3 module to power up
    mp3.begin(9600); //Begin Serial communication with the MP3 module
    setPlayMode(0x00);                        //0x00 = Single song - played once ie. not repeated. (default)
    
    //Define the Grove Button as an INPUT
    pinMode(buttonPin, INPUT);
    
    //Define the 4 LED Pins as OUTPUTs
    pinMode(8, OUTPUT); //Green LED
    pinMode(9, OUTPUT); //Blue LED
    pinMode(10, OUTPUT); //Red LED
    pinMode(11, OUTPUT); //Yellow LED
    
    //Make sure each LED is OFF, and store the state of the LED into a variable.
    for(int i=8;i<12;i++){
      digitalWrite(i, LOW);
      ledState[i-8]=0;
    } 
    
    //Double our clock speed from 125 kHz to 250 kHz
    ADCSRA &= ~PS_128;   // set up the ADC
    ADCSRA |= PS_64;    // set our own prescaler to 64
    
    //Create reference values to account for the capacitance of each pad.
    ref0 = ADCTouch.read(A0, 500);
    ref1 = ADCTouch.read(A1, 500); //Take 500 readings
    ref2 = ADCTouch.read(A2, 500);
    ref3 = ADCTouch.read(A3, 500);
    
     //This helps to randomise the drum pads.
     randomSeed(analogRead(0));
  }
  
  
  
  // Loop()
  //===================================================================================================
  void loop(){
     
    //Take a reading from the Grove Sliding Potentiometer, and set volume accordingly
    potVal = analogRead(potPin);
    mp3Vol = map(potVal, 0, 1023, 0,31); // Convert the potentometer reading (0 - 1023) to fit within the MP3 player's Volume range (0 - 31)
    if((mp3Vol>(oldVol+1))|(mp3Vol<(oldVol-1))){ // Only make a change to the Volume on the Grove MP3 player when the potentiometer value changes
      oldVol = mp3Vol;
      setVolume(mp3Vol);
      delay(10); // This delay is necessary with Serial communication to MP3 player
    }
    
    //Take a reading from the Pin attached to the Grove Button. If pressed, randomise the MP3 songs/sounds for each drum pad, and make the LEDs blink randomly.
    buttonStatus = digitalRead(buttonPin);
    if(buttonStatus==HIGH){
      SongNum[0]=randomSongChooser(1, 30);
      SongNum[1]=randomSongChooser(31, 60);
      SongNum[2]=randomSongChooser(61, 86);
      SongNum[3]=randomSongChooser(87, (int)numOfSongs);
      randomLEDBlink();
    }
    
    //Get the capacitive readings from each drum pad: 50 readings are taken from each pad. (default is 100)
    int value0 = ADCTouch.read(A0,50); // Green drum pad
    int value1 = ADCTouch.read(A1,50); // Blue drum pad
    int value2 = ADCTouch.read(A2,50); // Red drum pad
    int value3 = ADCTouch.read(A3,50); // Yellow drum pad
    
    //Remove the offset to account for the baseline capacitance of each pad.
    value0 -= ref0;       
    value1 -= ref1;
    value2 -= ref2;
    value3 -= ref3;
    
    
    //If any of the values exceed the designated threshold, then play the song/sound associated with that drum pad.
    //The associated LED will stay on for the whole time the drum pad is pressed, providing the value remains above the threshold.
    //The LED will turn off when the pad is not being touched or pressed.
    if(value0>threshold){
      digitalWrite(8, HIGH);
      playSong(00,SongNum[0]);
    }else{
      digitalWrite(8,LOW);
    }
    
    if(value1>threshold){
      digitalWrite(9, HIGH);
      playSong(00,SongNum[1]);
    }else{
      digitalWrite(9,LOW);
    }
    
    if(value2>threshold){
      digitalWrite(10, HIGH);
      playSong(00,SongNum[2]);
    }else{
      digitalWrite(10,LOW);
    }
    
    if(value3>threshold){
      digitalWrite(11, HIGH);
      playSong(00,SongNum[3]);
    }else{
      digitalWrite(11,LOW);
    }
  }
      
   
  // writeToMP3:
  // a generic function that simplifies each of the methods used to control the Grove MP3 Player
  //===================================================================================================
  void writeToMP3(byte MsgLEN, byte A, byte B, byte C, byte D, byte E, byte F){
    byte codeMsg[] = {MsgLEN, A,B,C,D,E,F};
    mp3.write(0x7E); //Start Code for every command = 0x7E
    for(byte i = 0; i<MsgLEN+1; i++){
      mp3.write(codeMsg[i]); //Send the rest of the command to the GROVE MP3 player
    }
  }
  
  
  //setPlayMode: defines how each song is to be played
  //===================================================================================================
  void setPlayMode(byte playMode){
    /* playMode options:
          0x00 = Single song - played only once ie. not repeated.  (default)
          0x01 = Single song - cycled ie. repeats over and over.
          0x02 = All songs - cycled 
          0x03 = play songs randomly                                           */
    writeToMP3(0x03, 0xA9, playMode, 0x7E, 0x00, 0x00, 0x00);  
  }
  
  
  //playSong: tells the Grove MP3 player to play the song/sound, and also which song/sound to play
  //===================================================================================================
  void playSong(byte songHbyte, byte songLbyte){
    writeToMP3(0x04, 0xA0, songHbyte, songLbyte, 0x7E, 0x00, 0x00);            
    delay(100);
  }
  
  
  //setVolume: changes the Grove MP3 player's volume to the designated level (0 to 31)
  //===================================================================================================
  void setVolume(byte Volume){
    byte tempVol = constrain(Volume, 0, 31); //Volume range = 00 (muted) to 31 (max volume)
    writeToMP3(0x03, 0xA7, tempVol, 0x7E, 0x00, 0x00, 0x00); 
  }
  
  
  //randomSongChooser: chooses a random song to play. The range of songs to choose from
  //is limited and defined by the startSong and endSong parameters.
  //===================================================================================================
  byte randomSongChooser(int startSong, int endSong){
    randNumber = random(startSong, endSong);
    return((byte) randNumber);
  }
  
  
  //randomLEDBlink: makes each LED blink randomly. The LEDs are attached to digital pins 8 to 12.
  //===================================================================================================
  void randomLEDBlink(){
   counter=8;
   for(int i=0; i<40; i++){
     int x = constrain((int)random(8,12),8,12);
     toggleLED(x);
     delay(random(50,100-i));
   }
     
    for(int i=8;i<12;i++){
      digitalWrite(i, HIGH);
    }
    delay(1000);
    for(int i=8;i<12;i++){
      digitalWrite(i, LOW);
      ledState[i-8]=0;
    }
  }
  
  
  //toggleLED: is used by the randomLEDBlink method to turn each LED on and off (randomly).
  //===================================================================================================
  void toggleLED(int pinNum){
    ledState[pinNum-8]= !ledState[pinNum-8];
    digitalWrite(pinNum, ledState[pinNum-8]);
  }


 

Arduino Code Discussion

You can see from the Arduino code above, that it uses the ADCTouch library. This library was chosen over the Capacitive Sensing Library to eliminate the need for a high value resistor which are commonly found in Capacitive Sensing projects).
 
To increase the speed of the Analog readings, I utilised one of the "Advanced Arduino ADC" techniques described by Guy van den Berg on this Microsmart website.
 
The readings are increased by modifying the Arduino's ADC clock speed from 125kHz to 250 kHz. I did notice an overall better response time with this modification. However, the Grove Serial MP3 player is limited by it's inability to play more than one song or sound at a time. This means that if you hit another drum pad while the current sound is playing, it will stop playing the current sound, and then play the selected sound. The speed at which it can perform this task was quite impressive. In fact it was much better than I thought it would be. But if you are looking for polyphonic playability, you will be dissapointed.
 
This Serial MP3 module makes use of a high quality MP3 audio chip known as the "WT5001". Therefore, you should be able to get some additional features and functionality from this document. Plus you may find some extra useful info from the Seeedstudio wiki. I have re-used some code from the Arduino Boombox tutorial... you will find extra Grove Serial MP3 functions on that page.
 
I will warn you... the Grove Serial MP3 player can play WAV files, however for some reason it would not play many of the sound files in this format. Once the sounds were converted to the MP3 format, I did not look back. So if you decide to take on this project, make sure your sound files are in MP3 format, you'll have a much better outcome.
 
I decided to introduce a random sound selection for each drum pad to extend the novelty of this instrument, which meant that I had to come up with a fancy way to illuminate the LEDs. I demonstrated some of my other LED sequences on my instagram account. I sometimes use instagram to show my work in progress.
 
Have a look at the video below to see this project in action, and putting the Grove Serial MP3 player through it's paces.
 

The Video


 


First there was the Arduino Boombox, and now we have the Arduino Beatbox..... who knows what will come next !
 
Whenever I create a new project, I like to improve my Arduino knowledge. Sometimes it takes me into some rather complicated topics. There is a lot I do not know about Arduino, but I am enjoying the journey. I hope you are too !! Please Google plus one this post if it helped you in any way. These tutorials are free, which means I survive on feedback and plus ones... all you have to do is just scroll a little bit more and click that button :)

 
 



If you like this page, please do me a favour and show your appreciation :

 
Visit my ArduinoBasics Google + page.
Follow me on Twitter by looking for ScottC @ArduinoBasics.
I can also be found on Pinterest and Instagram.
Have a look at my videos on my YouTube channel.


 
 

 
 
 



However, if you do not have a google profile...
Feel free to share this page with your friends in any way you see fit.

Solar Panel System Monitoring Device Using Arduino

[Carl] recently upgraded his home with a solar panel system. This system compliments the electricity he gets from the grid by filling up a battery bank using free (as in beer) energy from the sun. The system came with a basic meter which really only shows the total amount of electricity the panels produce. [Carl] wanted to get more data out of his system. He managed to build his own monitor using an Arduino.

The trick of this build has to do with how the system works. The panel includes an LED light that blinks 1000 times for each kWh of electricity. [Carl] realized that if he could monitor the rate at which the LED is flashing, he could determine approximately how much energy is being generated at any given moment. We’ve seen similar projects in the past.

Like most people new to a technology, [Carl] built his project up by cobbling together other examples he found online. He started off by using a sketch that was originally designed to calculate the speed of a vehicle by measuring the time it took for the vehicle to pass between two points. [Carl] took this code and modified it to use a single photo resistor to detect the LED. He also built a sort of VU meter using several LEDs. The meter would increase and decrease proportionally to the reading on the electrical meter.

[Carl] continued improving on his system over time. He added an LCD panel so he could not only see the exact current measurement, but also the top measurement from the day. He put all of the electronics in a plastic tub and used a ribbon cable to move the LCD panel to a more convenient location. He also had his friend [Andy] clean up the Arduino code to make it easier for others to use as desired.


Filed under: Arduino Hacks

Tech and Dance Unite to Tell a Story with Light

On a cold winter night in Kongsberg Norway, dancers draped in white sheets stand in a warm auditorium waiting to hear their mark. As the mark arrives, each dancer hits a button and is instantly lit up with 136 RGB LEDs. The dancers move fluidly across the stage in sync […]

Read more on MAKE

MAKE » Arduino 27 Feb 14:01