Posts with «pwm» label

Tutorial – pcDuino GPIO with Arduino IDE

Introduction

In this tutorial we’ll explain how to use the GPIO pins of the Arduino implementation in the pcDuino v2 and v3. As the v3 is now available you can use it as well, and it’s interchangeable with the v2. Although the pcDuino v2 is Arduino-compatible, there are a few differences that you need to be aware of – in order to make your projects a success and also to avoid any costly mistakes.

This tutorial builds on the knowledge from the initial review, so if pcDuino v2 is new to you please review this article before moving on. In this instalment we’ll run through the following:

  • ADC (analogue to digital)
  • Digital input and outputs
  • PWM (pulse-width modulation)
  • I2C bus
  • SPI bus

Using ADC pins

Just like an Arduino Uno or compatible, the pcDuino v2 has six ADC pins, in the expected locations:

Using the pcDuino v2’s ADC pins is quite straight forward, however you just need to remember a few things about the hardware – that the maximum input voltage on A0 and A1 is 2V – and 3.3V for A2~A5.

Although there is an AREF pin on the board, this function isn’t supported at the time of writing. From the software perspective A0 and A1’s values have a 6-bit resolution and can fall between 0 and 63 (0~2V), otherwise the others have a 12-bit resolution and thus return values between 0 and 4095 (0~3.3V). Using the ADC pins is simple, and demonstrated in the following sketch:

// pcDuino v2 ADC demonstration

#include <core.h> // for pcDuino

int a0, a1, a2, a3, a4, a5;

void setup() 
{
}

void loop() 
{
  // read all the ADCs
  a0 = analogRead(0);
  a1 = analogRead(1);
  a2 = analogRead(2);
  a3 = analogRead(3);
  a4 = analogRead(4);
  a5 = analogRead(5);
  // display ADC values to console
  printf(A0, A1,   A2,   A3,   A4,   A5\n);
  printf(%d  %d  %d  %d  %d  %d\n, a0, a1, a2, a3, a4, a5);
  printf(n);
  delay(1000);
}

… which results with the following in the console:

Digital outputs

The pcDuino v2’s implementation of digital outputs aren’t anything out of the ordinary – except that you are limited to a maximum voltage of 3.3V instead of the usual 5V. Furthermore you can only source 4mA from each pin. However if you have some 5V-only shields that you must use with your pcDuino v2 – there is a Voltage Translation board that can be used to solve the problem:

However using 3.3V for new designs shouldn’t be an issue – new sensors, ICs and so on should be 3.3V-compatible. And with the pcDuino v2 you get an extra four digital I/O pins, located next to the SPI grouping as shown below:

These are simply addressed as D14~D17. Now back for a quick demonstration with the typical LEDs. As the current sourced from each GPIO pin cannot exceed 4mA, you need to use a resistor to keep things under control. Using the LED wizard, by entering a 3.3V supply, 2.1V forward voltage for our LEDs and a 4mA current – the resistor value to use is 330Ω.

If you’re having a lazy attack and use 560Ω, the current will be around 2.5mA with acceptable results. We’ve done just that with the following demonstration sketch:

// pcDuino v2 digital output demonstration

#include <core.h> // for pcDuino

void setup() 
{
  pinMode(4, OUTPUT);
  pinMode(5, OUTPUT);
  pinMode(6, OUTPUT);
  pinMode(7, OUTPUT);  
  digitalWrite(4, LOW);  
  digitalWrite(5, LOW);
  digitalWrite(6, LOW);
  digitalWrite(7, LOW);  
}

void loop() 
{
  for (int i = 4; i < 8; i++)
  {
    digitalWrite(i, HIGH);
    delay(250);
    digitalWrite(i, LOW);
  }
}

… and the results in this video.

Digital inputs

When using the digital pins as inputs, just treat them as normal except they have a maximum input voltage of 3.3V for HIGH. Again – just keep thinking “3.3V”.

Using the I2C data bus

The I2C bus (or “two wire interface”) is a common serial data bus used for interfacing all manner of devices with a microcontroller. You can find a background on the I2C bus and Arduino tutorial here. Just like an Arduino Uno R3, the I2C bus pins are both A4 and A5 (for SCL and SDA) and can also be found up near D13, for example.

The limitations for the pcDuino v2’s version of I2C bus are few – the maximum speed is 200 kHz, it only uses 7-bit addresses and you can’t use the pcDuino in slave mode. However there are 2.2kΩ pullup resistors which can save using them with external circuitry.

We demonstrate the I2C bus by writing data to and reading it from a Microchip 24LC256 EEPROM (which is handy in itself as there isn’t any EEPROM function on the pcDuino v2). This is demonstrated with an Arduino Uno in part two of our I2C tutorials.

Connection is very easy – pins 1 to 4 of the EEPROM are connected to GND, pin 5 to SDA, pin 6 to SCL, pin 7 to GND and pin 8 to 3.3V. Finally a 0.1uF capacitor is placed across 3.3V and GND.

The sketch to read and write values to the EEPROM is simple, and apart from the #include <core.h> for the pcDuino all the other functions operate as normal.

// pcDuino I2C demonstration

#include <core.h> // for pcDuino
#include <Wire.h>   for I2C
#define chip1 0x50  device bus address for EEPROM

// always have your values in variables
unsigned int pointer = 69;  // we need this to be unsigned, as you may have an address  32767
byte d=0;  // example variable to handle data going in and out of EERPROMS

void setup()
{
  Wire.begin();  // wake up, I2C!
}

void writeData(int device, unsigned int add, byte data) 
// writes a byte of data 'data' to the chip at I2C address 'device', in memory location 'add'
{
  Wire.beginTransmission(device);
  Wire.write((int)(add  8)); // left-part of pointer address
  Wire.write((int)(add & 0xFF)); // and the right
  Wire.write(data);
  Wire.endTransmission();
  delay(10);
}

byte readData(int device, unsigned int add) 
// reads a byte of data from memory location 'add' in chip at I2C address 'device' 
{
  byte result;  // returned value
  Wire.beginTransmission(device);  // these three lines set the pointer position in the EEPROM
  Wire.write((int)(add  8));  // left-part of pointer address
  Wire.write((int)(add & 0xFF)); // and the right
  Wire.endTransmission();
  Wire.requestFrom(device,1); // now get the byte of data...
  result = Wire.read();
  return result;  // and return it as a result of the function readData
}

void loop()
{
  printf(Writing data...\n);
  for (int a=0; a10; a++)
  {
    writeData(chip1,a,a);
  }
  printf(Reading data...\n);
  for (int a=0; a10; a++)
  {
    d=readData(chip1,a);    
    printf(Pointer %d holds %d.\n,a,d);
  }
}

… which results with the following output in the console:

As you now know, using I2C isn’t hard at all. A lot of beginners shy away from it – or run screaming for the nearest library for their part. You don’t need libraries – spend a little time now learning about I2C and you’re set for life.

Using the SPI data bus

Again we have some SPI tutorials for Arduino, so check them out first if the concept is new to you. Writing to an SPI device with the pcDuino v2 isn’t tricky at all, you have the 3.3V hardware limitation and the SPI pins are in the same location (D10~D13) or in a separate group on the board:

Furthermore the maximum SPI speed is 12 MHz and the pcDuino v2’s  implementation of SPI can only work as a master. However in the sketch there are a few differences to note. To demonstrate this we’ll control a Microchip MCP4162 digital rheostat via SPI to control the brightness of an LED. Here is the circuit:

And now for the sketch. Take note of the fourth line in void setup() –  this is used to set the SPI bus speed to 12 MHz. You can also reduce the speed with other multipliers such as 32, 64 and 128 to slow it down even further. The other point to note is the use of SPI.transfer(). With the pcDuino v2 there are two parameters – the first is the data to send to the SPI device, and the second is either

SPI_CONTINUE

if there is another byte of data following immediately, or

SPI_LAST

if that is the last byte for that immediate transfer. You can see this use of the paramters within the function setValue() in the demonstration sketch below.

// pcDuino SPI demonstration

#include <core.h>  // for pcDuino
#include <SPI.h>
int ss = 10;
int del = 1000;

void setup()
{
  SPI.begin();
  SPI.setDataMode(SPI_MODE3);
  SPI.setBitOrder(MSBFIRST);
  SPI.setClockDivider(SPI_CLOCK_DIV16);
  pinMode(ss, OUTPUT);
  digitalWrite(ss, HIGH);
}

void setValue(int value)
{
  digitalWrite(ss, LOW);
  SPI.transfer(0, SPI_CONTINUE);
  SPI.transfer(value, SPI_LAST);
  digitalWrite(ss, HIGH);
}

void loop()
{
  setValue(255);
  delay(del);
  setValue(223);
  delay(del);
  setValue(191);
  delay(del);
  setValue(159);
  delay(del);
  setValue(127);
  delay(del);
  setValue(95);
  delay(del);
  setValue(63);
  delay(del);
  setValue(31);
  delay(del);
  setValue(0);
  delay(del);
}

When using the SPI bus, relevant data will appear in the console, for example:

And finally the demonstration video to show you it really works – you can see the output voltage from the rheostat and the matching LED brightness.

Receiving data from the SPI bus is equally as simple, however at the time of writing we don’t have an SPI device to demonstrate this, so please refer the SPI part of the pcDuino guide. Finally, you can’t use PWM on D10 or D11 when using the SPI bus in your sketch.

Pulse-width modulation

You can simulate analogue output using PWM with a pcDuino v2 – however there are two types of PWM pins available. The first is found on digital pins D3, D9, D10 and D11 – they are simulated PWM – and have a low range of zero to twenty at 5 Hz. There are two hardware PWM pins – D5 and D6, which  run at 520Hz and have the full range of 0~255 available in analogWrite(). Once again – they output 3.3V. Furthermore, you can’t use pinMode() functions or the SPI bus if using D10 and/or D11 for PWM.

Conclusion

Now you should have an understanding of the features and limitations of using GPIO pins with your pcDuino v2 Arduino sketches. And finally a plug for my own store – tronixlabs.com – offering a growing range and Australia’s best value for supported hobbyist electronics from adafruit, DFRobot, Freetronics, Seeed Studio and much more.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

The post Tutorial – pcDuino GPIO with Arduino IDE appeared first on tronixstuff.

Tronixstuff 29 Jan 04:12
adc  arduino  gpio  i2c  input  output  pcduino  pwm  review  spi  tronixlabs  tronixstuff  tutorial  

Tutorial – Arduino and the TLC5940 PWM LED Driver IC

Use the Texas Instruments TLC5940 16-Channel LED Driver IC with Arduino in Chapter 57 of our Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Introduction

Today we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. Our reason for doing this is to demonstrate another, easier way of driving many LEDs – and also servos.  First up, here is a few examples of the TLC5940

The TLC5940 is available in the DIP version above, and also surface-mount. It really is a convenient part, allowing you to adjust the brightness of sixteen individual LEDs via PWM (pulse-width modulation) – and you can also daisy-chain more than one TLC5940 to control even more.

During this tutorial we’ll explain how to control one or more TLC5940 ICs with LEDs and also look at controlling servos. At this point, please download a copy of the TLC5940_data_sheet (.pdf) as you will refer to it through this process. Furthermore, please download and install the TLC5940 Arduino library by Alex Leone which can be found here. If you’re not sure how to install a library, click here.

Build a TLC5940 demonstration circuit

The following circuit is the minimum required to control sixteen LEDs from your Arduino or compatible. You can use it to experiment with various functions and get an idea of what is possible. You will need:

  • An Arduino Uno or compatible board
  • 16 normal, everyday LEDs that can have a forward current of up to 20 mA
  • a 2 kΩ resistor (give or take 10%)
  • a 0.1uF ceramic and a 4.7uF electrolytic capacitor

Take note of the LED orientation – and remember the TLC5940 is a common-anode LED driver – so all the LED anodes are connected together and then to 5V:

For this particular circuit, you won’t need an external 5V power supply – however you may need one in the future. The purpose of the resistor is to control the amount of current that can flow through the LEDs. The required resistor value is calculated with the following formula:

R = 39.06 / Imax

where R (in Ohms)  is the resistor value and Imax (in Amps) is the maximum amount of current you want to flow through the LEDs. For example, if you have LEDs with a 20 mA forward current – the resistor calculation would be:

R = 39.06 / 0.02 = 1803 Ohms.

Once you have the circuit assembled – open up the Arduino IDE and upload the sketch BasicUse.pde  which is in the example folder for the TLC5940 library. You should be presented with output similar to what is shown in the following video:

Controlling the TLC5940

Now that the circuit works, how do we control the TLC5940? First, the mandatory functions – include the library at the start of the sketch with:

#include "Tlc5940.h"

and then initialise the library by placing the following into void setup():

Tlc.init(x);

x is an optional parameter – if you want to set all the channels to a certain brightness as soon as the sketch starts, you can insert a value between 0 and 4095 for in the Tlc.init() function.

Now to turn a channel/LED on or off. Each channel is numbered from 0 to 15, and each channel’s brightness can be adjusted between 0 and 4095.

This is a two-part process…

First – use one or more of the following functions to set up the required channels and respective brightness (PWM level):

Tlc.set(channel, brightness);

For example, if you wanted to have the first three channels on at full brightness, use:

Tlc.set(0, 4095);
Tlc.set(1, 4095);
Tlc.set(2, 4095);

The second part is to use the following to update the TLC5940 with the required instructions from part one:

Tlc.update();

If you want to turn off all channels at once, simply use:

Tlc.clear();

You don’t need to call a TLC.update() after the clear function. The following is a quick example sketch that sets the brightness/PWM values of all the channels to different levels:

#include "Tlc5940.h"
void setup()
{
  Tlc.init(0); // initialise TLC5940 and set all channels off
}

void loop()
{
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 1023);
  }
  Tlc.update();
  delay(1000);
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 2046);
  }
  Tlc.update();
  delay(1000);
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 3069);
  }
  Tlc.update();
  delay(1000);
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 4095);
  }
  Tlc.update();
  delay(1000);
}

and the sketch in action:

The ability to control individual brightness for each channel/LED can also be useful when controlling RGB LEDs – you can then easily select required colours via different brightness levels for each element.

Using two or more TLC5940s

You can daisy-chain quite a few TLC5940s together to control more LEDs. First – wire up the next TLC5940 to the Arduino as shown in the demonstration circuit – except connect the SOUT pin (17) of the first TLC5940 to the SIN pin (26) of the second TLC5940 – as the data travels from the Arduino, through the first TLC5940 to the second and so on. Then repeat the process if you have a third, etc. Don’t forget the resisotr that sets the current!

Next, open the file tlc_config.h located in the TLC5940 library folder. Change the value of NUM_TLCS to the number of TLC5940s you have connected together, then save the file and also delete the file Tlc5940.o also located in the same folder. Finally restart the IDE. You can then refer to the channels of the second and further TLC5940 sequentially from the first. That is, the first is 0~15, the second is 16~29, and so on.

Controlling servos with the TLC5940

As the TLC5940 generates PWM (pulse-width modulation) output, it’s great for driving servos as well. Just like LEDs – you can control up to sixteen at once. Ideal for creating spider-like robots, strange clocks or making some noise. When choosing your servo, ensure that it doesn’t draw more than 120 mA when operating (the maximum current per channel) and also heed the “Managing current and heat” section at the end of this tutorial. And use external power with servos, don’t rely on the Arduino’s 5V line.

To connect a servo is simple – the GND line connects to GND, the 5V (or supply voltage lead) connects to your 5v (or other suitable supply) and the servo control pin connects to one of the TLC5940’s outputs. Finally – and this is important – connect a 2.2kΩ resistor between the TLC5940 output pin(s) being used and 5V.

Controlling a servo isn’t that different to an LED. You need the first two lines at the start of the sketch:

#include "Tlc5940.h"
#include "tlc_servos.h"

then the following in void setup():

tlc_initServos();

Next, use the following function to select which servo (channel) to operate and the required angle (angle):

tlc_setServo(channel, angle);

Just like the LEDs you can bunch a few of these together, and then execute the command with:

Tlc.update();

So let’s see all that in action. The following example sketch sweeps four servos across 90 degrees:

#include "Tlc5940.h"
#include "tlc_servos.h"

void setup()
{
  tlc_initServos();  // Note: this will drop the PWM freqency down to 50Hz.
}

void loop()
{
  for (int angle = 0; angle < 90; angle++) {
    tlc_setServo(0, angle);
    tlc_setServo(1, angle);
    tlc_setServo(2, angle);
    tlc_setServo(3, angle);    
    Tlc.update();
    delay(5);
  }
  for (int angle = 90; angle >= 0; angle--) {
    tlc_setServo(0, angle);
    tlc_setServo(1, angle);
    tlc_setServo(2, angle);
    tlc_setServo(3, angle);    
    Tlc.update();
    delay(5);
  }
}

And the following video captures those four servos in action:

 

If you servos are not rotating to the correct angle – for example you ask for 180 degrees and they only rotate to 90 or thereabouts, a little extra work is required. You need to open the tlc_servos.h file located in the TLC5940 Arduino library folder and experiment with the values for SERVO_MIN_WIDTH and SERVO_MAX_WIDTH. For example change SERVO_MIN_WIDTH from 200 to 203 and SERVO_MAX_WIDTH from 400 to 560.

Managing current and heat 

As mentioned earlier, the TLC5940 can handle a maximum of 120 mA per channel. After some experimenting you may notice that the TLC5940 does get warm – and that’s ok. However there is a maximum limit to the amount of power that can be dissipated before destroying the part. If you are just using normal garden-variety LEDs or smaller servos, power won’t be a problem. However if you’re planning on using the TLC5940 to the max – please review the notes provided by the library authors.

Conclusion

Once again you’re on your way to controlling an incredibly useful part with your Arduino. Now with some imagination you can create all sorts of visual displays or have fun with many servos. And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Tutorial – Arduino and the TLC5940 PWM LED Driver IC appeared first on tronixstuff.

Tronixstuff 21 Oct 03:47

ESC + L293 + Brushless motor

So, i've been having some trouble lately and I can't seem to find a solution on the web. I've managed to controll a brushless motor through and ESC and arduino with PWM. Nothing too dificult. What I need now is a way to controll an inversion of the motor. Like you know, changing two of the wires from the motor makes it turn the other way around.

read more

Let's Make Robots 20 Aug 14:14
arduino  avr  brushless motor  esc  inverter  l293  pwm  

Electric bike (earplugs not included)

It’s obvious this bike has some extra parts. But look closely and you’ll see the chainring has no chain connecting to it. Pedaling will get you nowhere since [PJ Allen] rerouted the chain in order to drive this bicycle using an electric motor.

He’s got beefy motor which pulls 350 Watts at 24 Volts. For speed control he opted to use an Arduino, pumping out PWM signals to some MOSFETs. This results in an incredibly noisy setup, as you can hear in the bench test video after the break. But once this is installed on the bike it doesn’t quiet down at all. You can hear the thing a block away.

The original road test fried the first set of 7A MOSFETs when trying to start the motor from a standstill. It sounds like the 40A replacements he chose did the trick through. We didn’t see any information on the battery life, but if he runs out of juice on the other side of town we bet he’ll be wishing he had left the chain connected to the crankset.


Filed under: transportation hacks
Hack a Day 29 Jun 22:01

Can I Control a Servo via PWM from an Optocoupler

Question: Is it possible to control this hobby servo using a PWM signal from Arduino via this optocoupler to the servo?

read more

NPN Transistor Sketch (P2N2222AG) using PWM

We are now going to build a simple circuit to test out the P2N2222AG transistor in the sparkfun inventor's kit. You can also buy this transistor from RS-online.

Here are the components that you will need.
  • 1 x Arduino UNO
  • 1 x Breadboard
  • 1 x P2N2222AG transistor
  • 3 x LEDs  (1 x Red LED, 2 x Yellow LEDs)
  • 3 x 330 ohm Resistors
  • Wires to connect it all together.
Here is the Fritzing sketch:






We will use Pulse width modulation (PWM) to fade the LEDs in and out. 
Load the "Fading" example into the Arduino. (File>Examples>Analog>Fading)



I used this sketch to help me understand how electricity flowed through the transistor by disconnecting a wire here and there. I am not sure if this is advisable, so do this at your own risk. If you are an electrical engineer, feel free to comment. Please let me know if this is "risky" business.
I have had no formal training in electronics, so don't blame me if your arduino, or transistor blows up !
But from what I understand, I cannot see any harm in disconnecting wires with this particular circuit.
Please note, that I would disconnect the power to the arduino before modifying the wires.