Posts with «learn» label

Hack Your Cat’s Brain to Hunt For Food

This cat feeder project by [Ben Millam] is fascinating. It all started when he read about a possible explanation for why house cats seem to needlessly explore the same areas around the home. One possibility is that the cat is practicing its mobile hunting skills. The cat is sniffing around, hoping to startle its prey and catch something for dinner. Unfortunately, house cats don’t often get to fulfill this primal desire. [Ben] thought about this problem and came up with a very interesting solution. One that involves hacking an electronic cat feeder, and also hacking his cat’s brain.

First thing’s first. Click past the break to take a look at the demo video and watch [Ben’s] cat hunt for prey. Then watch in amazement as the cat carries its bounty back to the cat feeder to exchange it for some real food.

[Ben] first thought about hiding bowls of food around the house for his cat to find, but he quickly dismissed this idea after imagining the future trails of ants he would have to deal with. He instead thought it would be better to hide some other object. An object that wouldn’t attract pests and also wouldn’t turn rancid over time. The problem is his cat would have to know to first retrieve the object, then return it to a specific place in order to receive food as a reward. That’s where the cat hacking comes in.

[Ben] started out by training his cat using the clicker method. After all, if the cat couldn’t be trained there was no use in building an elaborate feeding mechanism. He trained the cat to perform two separate behaviors, one tiny bit at a time. The first behavior was to teach the cat to pick up the ball. This behavior was broken down into six micro behaviors that would slowly be chained together.

  • Look at the ball
  • Approach the ball
  • Sniff the ball
  • Bite the ball
  • Pick up the ball
  • Pick up the ball and hold it for a few seconds

[Ben] would press on the clicker and reward his cat immediately upon seeing the desired step of each behavior. Once the cat would perform that step regularly, the reward was removed and only given to the cat if the next step in the chain was performed. Eventually, the cat learned the entire chain of steps, leading to the desired behavior.

Next, [Ben] had to teach his cat about the target area. This was a separately trained behavior that was broken down into the following three steps.

  • Look at the target area
  • Approach the target area
  • Sniff the target area

Once the cat learned both of these behaviors, [Ben] had to somehow link them together. This part took a little bit of luck and a lot of persistence. [Ben] would place the ball near the target area, but not too close. Then, he would reward his cat only when the cat picked up the ball and started moving closer to the target area. There is some risk here that if the cat doesn’t move toward the target area at all, you risk extinguishing the old behaviors and they will have to be learned all over again. Luckily, [Ben’s] cat was smart enough to figure it out.

With the cat properly trained, it was time to build the cat feeder. [Ben] used an off-the-shelf electronic feeder called Super Feeder as the base for his project. The feeder is controlled by a relay that is hooked up to an Arduino. The Arduino is also connected to an RFID reader. Each plastic ball has an RFID tag inside it. When the cat places the ball into the target area, the reader detects the presence of the ball and triggers the relay for a few seconds. The system also includes a 315MHz wireless receiver and remote control. This allows [Ben] to manually dispense some cat food should the need arise.

Now whenever the cat is hungry, it can use those primal instincts to hunt for food instead of just having it freely handed over.

[Thanks Dan]


Filed under: home hacks
Hack a Day 08 Aug 18:00
315mhz  arduino  ball  behavior  brain  cat  clicker  control  feeder  food  home  home hacks  hunt  kitten  learn  psychology  remote  rfid  tag  teach  training  

Learn electronics with Chris Gammell and “Contextual Electronics”

Electrical engineer Chris Gammell has spent almost a year creating his new online electronics program called “Contextual Electronics“, and we’re excited to share this with our readers. You may have heard of Chris from his regular successful podcast with Dave Jones  – “The Amp Hour“.

Chris has the knowledge and expertise to take electronic ideas from simply that – an idea, right through to production. And by participating in his Contextual Electronics program you can learn the required skills to do this as well. Chris gives us a quick introduction in this video.

Contextual Electronics is a new program aimed at electronics enthusiasts who are ready to take their Arduino (or similar platform) skills to the next level. The first session of the course is an 8 week program that will teach you how to design a large, multi-function Arduino shield using KiCad, the open source CAD software.

It will also show you all of the design decisions that go into making the project. Here are some of the sub-circuits included in the 4-layer PCB design:

  • High level signals measurement using op-amps
  • Power supply output
  • Relay control
  • LED driver circuitry
  • Current source output

The course has a large community component, so you will be grouped with others learning at the same time, regardless of where you’re located in the world. The goal of the course and the community aspect is to make you more confident designing a project so you can go and design your own.

Future sessions of the course will also go over building, troubleshooting and coding for the shield described above. There is also a free short course that you can review to give you an idea of Chris’ methods and what the Contextual Electronics program will be like.

Additional courses will be developed using other popular development boards, including the Raspberry Pi and BeagleBone. For a more in-depth introduction, check out this video.

Frankly the program will help all of you who are ready to take your ideas and projects off the breadboard and into finished products, and with the guidance available with the program and the use of open-source tools you’ll be up and making things you can be proud of showing to friends or even potential employers. For more information about the program, and to sign up – visit the Contextual Electronics program website.

And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop”.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Learn electronics with Chris Gammell and “Contextual Electronics” appeared first on tronixstuff.

MAKEmatics – Mathematics for Makers

Makers need to familiarize themselves with the core concepts and the theory involved in creating applications such as Motion Sensing and Face Tracking. As the technology is churning out new hardware day and night, DIYers need to work hard to keep up and always be in touch with the latest technology around them.

-->-->

For example, anyone working with Accelerometers/ Gyroscopes or Inertial Measurement Units needs to understand the theory of Vectors, Force, Gravity and be able to work out complex mathematical problems. They may easily get an Arduino Board and an Accelerometer Breakout or an IMU Board and use a library instead of writing their own code but to truly understand the theory behind it; how the device actually works, is not for the faint of heart.

 

One such problem is the Face Tracking Application. Unless you know the real theory behind how the Algorithm actually works, you can only wonder about that robot which follows its master. Greg Borenstein had an idea of creating a website dedicated to this issue. Makematics – Math for Makers.

 

In an introductory post, Greg writes:

” I hope to show that a normal programmer with no special academic training can grapple with these areas of research and find a way in to understanding them. And as I go I aim to create material that will help others do the same. If I can do it, there’s no reason you can’t.”

More and more people should step forward and create or compile a good amount of research data to help fellow makers and DIYers in solving complex mathematical problems.