Posts with «uno» label

Rick and Morty fans will love this butter robot

Up until the present day, if you need butter, you simply ask another human to “pass the butter,” leading to minor inconvenience and awkwardness. Engineering students in Brussels have come up with a novel solution: a robot that brings the butter to you!

The robot, inspired by Rick and Morty’s Butter Bot, is powered by an Arduino Uno and summoned to hungry humans via an infrared remote control.

When the signal detected by onboard IR sensors, the robot moves over using continuous-rotation modded servos, then flips its cap-like lid to reveal the butter inside.

Want a Butbot of your own? You can find the build process and code in the student team’s write-up here.

RoboGlove assists users with gripping objects

The RoboGlove project is a robotic glove by students at the Université Libre de Bruxelles that is designed to assist the wearer when continuously gripping objects.

This is accomplished by a series of three servos that transmit force through cables for the index finger, middle finger, and thumb. Control is via an Arduino Uno, which takes input from pressure sensors in the three finger fixtures, helping the wearer keep gripping when force is initially exerted to close a fist.

The glove has a wire connection that links the fingers to some servo motors: a wire is attached to the extremity of the finger and to the servo, so when the servo turns, the wire is pulled and the finger is flexed. In this way, by controlling the grip done by the user through some pressure sensors in the extremity of the fingers, we are able to actuate the motors in a controlled way and help the gripping by bending the finger proportionally to the rotation of the motors and so to the rolling up of the wires. In this way we should be able either to allow weak people to grip objects or help even people in physiological conditions to grip objects and to keep it without any effort.

While still a prototype, it’s an interesting device that could be developed further into a very helpful augmentation. You can see it in action in the video below!

Control lights and sounds with the Arduino-powered LED Eclipse

If you need a MIDI device that can be programmed as your own unique light and sound controller, then Jon Bumstead’s LED Eclipse may be just what you’re looking for.

The circular device, roughly the diameter of a large plate, is constructed out of 30 layers of MDF, and boasts 10 capacitive sensors made with copper strips, as well as 10 corresponding programmable LEDs.

An Arduino Uno powers the assembly, which can be seen being played like a multi-player electronic piano towards the end of the video below. It can also be used as a Simon-style game, and even a light display—though you could program it for any other application you desire!

These students made their own Guitar Hero-like video game

If you’d like to create your own simulated guitar from scratch, you’ll want to check out this project by Cornell ECE students Jake Podell and Jonah Wexler. It uses four conductive strings on the neck to sense which note is selected, along with a pick wired as input to tell when the string has been plucked.

An Arduino Uno takes these inputs and feeds them to a computer via USB serial. Information is then transmitted over Bluetooth to a PIC32 microcontroller, which displays a scrolling fretboard on a TFT screen.

The pseudo-musician must strum along to the song shown—Ode to Joy in this case—hearing a strumming sound for correct notes, or an annoying beep for errors.

Similar to the classic music games like Rock Band and Guitar Hero, we use a TFT to display notes that move across the screen towards a strum region, produce guitar plucks and undertones of a song, and keep track of the user’s score. The user plays notes on a wireless mock guitar built with carbon-impregnated elastic as strings and a conducting plectrum for the guitar pick. The guitar is connected to an Arduino Uno which communicates wirelessly via Bluetooth to the PIC32. The goal of this video game is to learn the basic finger movements of holding down strings and strumming at the correct time for novice guitar players. The project can easily be extended for more advanced finger movements on the strings and strum timing for those with more experience.

You can see more of the project in its write-up here and in the video below!

Star Wars fan creates an Arduino-powered rebel pilot chest box

If you’d like a rebel fighter pilot suit, complete with the automated chest box, then look no further than this excellent build from “badjer1.”

It features a chest box with the same dimensions seen in the movies that lights up randomly, and even allows bored pilots to play a game of Pong on its double-LED matrix display using a dial next to it.

The Arduino Uno-powered device can also scroll through marquee displays featuring X-Wings and TIE Fighters, and play the Imperial March as required.

You can see more about the project, including how the box and the rest of the uniform were weathered, in badjer1’s write-up here.

A chronograph rig for high-speed glass photography

To capture images of bullets “interacting” with various objects, photographic hacker Tyler Gerritsen created an impressive chronograph rig, able to measure the speed of a bullet launched from a rifle at 1000 meters per second. While the concept of measuring time from one sensor to another isn’t new, implementation at this speed required some interesting tricks.

To accomplish this feat, Gerritsen designed his own sensor array using photodiodes in a reverse-biased setup, and even calibrated the clock speed of the Arduino Uno for control in order to account for any variation. Finally, the time between triggering a flash and light actually appearing had to be compensated for in the code, a different value for each type of equipment.

The project write-up is a great read for anyone interested in this type of photographic or measurement technique, and the resulting photos can be seen here.

Intelli-Buoy gathers water data

Water is essential to life on earth, and making sure our rivers and lakes are free from pollution is therefore quite important. For environmental monitoring, students from Bergen County Academics Magnet High School have come up with the Intelli-Buoy system that can track water turbidity, pH, oxygen, and temperature levels for analysis. It can also keep tabs on wind speed and rain stats for possible correlation.

The floating device uses a pair of Arduino Unos with an SD card shield mounted on each in order to record these statistics over several days, and it’s designed with two external USB ports for easy access.

Be sure to check out this orange PVC sensor assembly the video seen here.

Eliminate shop dust automatically with Arduino

What’s the best way to dispose of the dust that is produced when cutting with power tools? YouTuber Bob Claggett’s answer is to automate the process entirely, using a series of PVC sewer pipes to transport air to a central vacuum system, along with an Arduino Uno for control.

Airflow is regulated via a blast gate for each power tool, which is opened and shut using a hobby-style servo and custom linkage system. The powerful dust collector is controlled with the help of a relay.

Cleverly, a voltage sensor is employed for each power tool needing dust collection, allowing the Arduino to turn on the system and decide which gate to open without any human interaction.

Want a similar system for your workshop? Be sure to check out Claggett’s entire build in his write-up here and in the video below!

Gamify Your Workout with the Wearable Console Controller

‘Tis soon to be the season when resolutions falter and exercise equipment purchased with the best of intentions is cast aside in frustration. But with a little motivation, like making your exercise machine a game console controller, you can maximize your exercise gear investment and get in some guilt-free gaming to boot.

Honestly, there is no better motivation for keeping up with exercise than taking classes, but not many people have the discipline — or the pocketbook — to keep going to the gym for the long haul. With this in mind, [Jason] looked for a way to control PS4  games like Mario Karts or TrackMania with his recumbent bike. In an attempt to avoid modifying the bike, [Jason] decided on a wearable motion sensor for his ankle. Consisting of an Uno, an MPU9250 accelerometer, and a transmitter for the 433-MHz ISM band, the wearable sends signals to a receiver whenever the feet are moving. This simulates pressing the up arrow controller key to set the game into action. Steering and other game actions are handled by a regular controller; we’d love to see this expanded to include strain gauges on the recumbent bike’s handles to allow left-right control by shifting weight in the seat. Talk about immersive gameplay!

While we like the simplicity of [Jason]’s build and the positive reinforcement it provides, it’s far from the first exercise machine hack we’ve seen. From making Google Street View bike-controlled to automatically logging workouts, exercise machines are ripe for the hacking.


Filed under: Misc Hacks, Wearable Hacks
Hack a Day 29 Nov 06:00

Antique grandfather clock retrofitted with Arduino control

When you see a mechanical clock, you know on some level that it took a vast amount of expertise and craftsmanship to get working, but you might also assume that this could all be swapped out very easily with modern electronics. While this might be the case with a clock that only tells time, as David Henshaw shows with his project, once you add in extra features like a moon phase, date indicator, and chimes, things get complicated quickly.

Henshaw began by purchasing an 1847 vintage clock from England without the movement—the parts that actually it tell time. He then replaced the mechanical assembly normally found inside with stepper motors, sensors, an Arduino Uno, and a variety of other wires and bits.

You can see the retrofitted grandfather clock in action below, while the build process (which took the better part of a year) and Arduino code he used are outlined on his website.