Posts with «textiles» label

An Open Hardware Automatic Spinning Machine

The team at the Berlin-based Studio HILO has been working on ideas and tools around developing a more open approach to small-scale textile production environments. Leveraging open-source platforms and tools, the team has come up with a simple open hardware spinning machine that can be used for interactive yarn production, right on the desktop. The frame is built with 3030 profile aluminium extrusions, with a handful of 3D printed, and a smidge of laser cut parts. Motion is thanks to, you guessed it, NEMA 17 stepper motors and the once ubiquitous Arduino Mega 2560 plus RAMPS 1.4 combination that many people will be very familiar with.

The project really shines on the documentation side of things, with the project GitLab positively dripping with well-organised information. One minor niggle is that you’ll need access to a polyjet or very accurate multi-material 3D printer to run off the drive wheel and the associated trailing wheel. We’re sure there’s a simple enough way to do it without those tools, for those sufficiently motivated.

We liked the use of Arduino for the firmware, keeping things simple, and in the same vein, Processing for the user interface. That makes sending values from the on-screen slider controls over the USB a piece of cake. Processing doesn’t seem to pop up on these pages too often, which is a shame as it’s a great tool to have at one’s disposal. On the subject of the user interface, it looks like for now only basic parameters can be tweaked on the fly, with some more subtle parameters needing fixing at firmware compilation time. With a bit more time, we’re sure the project will flesh out a bit more, and that area will be improved.

Of course, if you only have raw fibers, that are not appropriately aligned, you need a carder, like this one maybe?

Thanks [Daniel] for the tip!

Robotic Tufting Gun Fires Off CNC Textiles

Often used to make rugs, tufting is a process wherein a hollow needle is used to cram thread or yarn into fabric in some kind of pattern. This can be done by hand, with a gun, or with big machines. Some machines are set up to punch the same pattern quickly over and over again, and these are difficult to retool for a new pattern. Others are made to poke arbitrary patterns and change easily, but these machines move more slowly.

This robotic tufting system by [Owen Trueblood] is of the slow and arbitrary type. It will consist of a modified tufting gun strapped to a robot arm for CNC textile art. Tufting guns are manufactured with simple controls — a power switch, a knob to set the speed, and a trigger button to do the tufting. Once it’s affixed to the robot arm, [Owen] wants to remote control the thing.

The gun’s motor driver is nothing fancy, just a 555 using PWM to control a half H-bridge based on input from the speed control potentiometer. [Owen] replaced the motor controller with an Arduino and added an I/O port. The latter is a 3.5 mm stereo audio jack wired to GND and two of the Arduino’s pins. One is a digital input to power the gun, and the other is used as an analog speed controller based on input voltage. [Owen] is just getting started, and we’re excited to keep tabs on this project as the gun goes robotic.

This isn’t the first time we’ve seen robots do textiles — here’s a 6-axis robot arm that weaves carbon fiber.

Hack a Day 06 Mar 06:00

Computer 1.0 explores the relationship between textile and technology

While you might have never considered the idea, looms—especially the punchcard-driven Jacquard loom, which helped inform both Ada Lovelace and Charles Babbage’s pioneering work—are an important part of computing history. As reported here, Victoria Manganiello and Julian Goldman have created an awe-inspiring ode to this computing heritage in the form of a handwoven tapestry that constantly changes the way it looks, aptly named “Computer 1.0.”

The tapestry, which was recently on display at the Museum of Arts and Design in New York City, stretches nine meters in length and features tubing woven throughout. An Arduino actuates pumps and valves to produce familiar patterns in this tubing with blue-dyed water and air.

These patterns soon become abstract and perhaps more open to interpretation, though with more development it’s noted that images and even smartphone-readable designs could be possible. 

Be sure to see the short demo of this incredible installation in the video below! 

A handwoven textile activated by computer code, Computer 1.0 explores connections between weaving and technology. For the project, Victoria Manganiello invited designer Julian Goldman to collaborate on designing and programming a pump controlled by Arduino microcomputers to move precise sequences of air and liquid through the approximately 2,000 feet of tubing woven through the cloth. The movement of the air and liquid evokes traditional weaving patterns such as bird’s eye, monk’s cloth, and twill. And the operating system—the computer and the pump—is not kept out of sight in the service of the woven screen and the pixelated patterns that run across it, but rather are an integral part of the work; nothing is hidden.


Manganiello’s textile reflects and expands on the ob­scured history of weaving and coding, calling attention to the “under-over, under-over” movement of thread becoming cloth that originally inspired the “zero-one-zero-one” of binary code. The jacquard loom of 1801, which used punch cards to program the movement of thread into increasingly complex woven patterns, is a direct, though frequently forgotten, ancestor of modern computers.

How Punch Cards and Arduino Close the Gap on Hacked Knitting

You can still use punch cards to operate knitting machines, but a few groups are now bringing the technology full circle by hacking knitting machines so that they may be operated digitally via an Arduino.

Read more on MAKE

The post How Punch Cards and Arduino Close the Gap on Hacked Knitting appeared first on Make: DIY Projects and Ideas for Makers.