Posts with «green» label

Solar Powered DIY Plant Watering System

It’s great having fresh vegetables just a few steps away from the kitchen, but it takes work to keep those plants healthy. [Pierre] found this out the hard way after returning from vacation to find his tomato plant withering away. He decided to put an end to this problem by building his own solar-powered plant watering system (page in French, Google translation).

An Arduino serves as the brain of the system. It’s programmed to check a photo resistor every ten minutes. At 8:30PM, the Arduino will decide how much to water the plants based on the amount of sunlight it detected throughout the day. This allows the system to water the plants just the right amount. The watering is performed by triggering a 5V relay, which switches on a swimming pool pump.

[Pierre] obviously wanted a “green” green house, so he is powering the system using sunlight. A 55 watt solar panel recharges a 12V lead acid battery. The power from the battery is stepped down to the appropriate 5V required for the Arduino. Now [Pierre] can power his watering system from the very same energy source that his plants use to grow.


Filed under: Arduino Hacks, green hacks

Add long-distance connectivity to your Arduino with the CATkit System

Introduction

Have you ever wanted to connect your Arduino to sensors or other devices but over a long distance? And we don’t mean a few metres – instead, distances of up to 100 metres? Doing so is possible with the CATkit system from SMART greenhouse.

This system is a combination of small boards that are connected between your Arduino and external devices using CAT5 networking cable, giving a very simple method of connecting devices over distances you previously thought may not have been possible – or have used costly wireless modules in the past.

The maximum distances possible depend on the signal type, for example:

  • analogue signals up to 100 metres (with a 0.125 V drop)
  • 1-wire signals (ideal for DS18B20 temperature sensors) up to 75 metres
  • SPI bus up to 50 metres
  • I2C bus up to 35 metres
  • Serial data at 9600 bps varies between 50 and 100 metres

In principle you could also use this with other development boards that utilise the Arduino Uno shield form-factor and work with 5V – so not for the Arduino Due, etc. For more information check out the .pdf documentation at the bottom of this page.

How it works

For each system you need one CATkit Arduino shield:

… and one or more Kitten boards. These are both inline – in that they can “tap in” to a run:

or have one RJ45 socket for installation at the end of a cable run:

Note that the inline Kitten has male pins for the breakout, and the end unit has females. These units are available in kit form or assembled. You then use the network cables between the shield and each Kitten, for example:

Each Kitten can distribute six signals, and up to three can be connected to one CATkit shield. These three distribute analogue pins 0~5, digital pins 0~5 and 6~11 respectively. You can also introduce external power to the CATkit shield and the onboard regulator will offer 5V at up to 950 mA for the power bus which can be accessed from the inline or end Kitten boards. This saves having to provide separate 5V power to devices away from the Arduino, and very convenient for sensors or remote I2C-interface displays.  

Using the CATkit system

If you have the units in kit form, assembly is very simple. For example – the main CATkit shield:

The shield is in the latest Arduino R3 format, and all the required parts are included. The PCB is neatly solder-masked and silk-screened so soldering is easy. The power regulator is in D-PAK form, however with a little help it’s easy to solder it in:

Otherwise the shield assembly is straight forward, and in around ten minutes you have the finished product (somehow we lost the DC socket, however one is included):

The cut-out in the PCB gives a neat clearance for the USB socket.  The inline unit was also easily assembled, and again the kit includes all the necessary parts:

… and after a few minutes of soldering the board is ready:

A benefit of using the kit version is that you can directly solder any wires from sensors straight to the PCB for more permanent installations. 

Using the CATkit system

Any Arduino user with a basic understanding of I/O will be ready for the CATkit system. You can think of it as a seamless extension to the required I/O pins, taking into account the maximum distances possible as noted on the CATkit website or earlier in this review.

For a quick test we connected an I2C-interface LCD using an inline Kitten module via 5M of network cable, as shown in this video.

Conclusion

With a little planning and the CATkit system you can create neat plug-and-play sensor or actuator networks with reusable lengths of common networking cable. To do so is simple – and it works, so for more information and distributors please visit the product website.

And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop”.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – CATkit system parts are a promotional consideration from SMART green house]

The post Add long-distance connectivity to your Arduino with the CATkit System appeared first on tronixstuff.

Tronixstuff 12 Apr 23:33

Review – Iteaduino Lite “nearly 100% Arduino-compatible” board

Introduction

Over the last year there have been a few crowd-funded projects that offered very inexpensive Arduino-compatible boards. Frankly most of them weren’t anything out of the ordinary, however one of them is quite interesting due to the particular design of the board, and is the subject of this review.

An established company Iteadstudio ran a successful Indiegogo campaign last December to fund their Iteaduino Lite – Most inexpensive full-sized Arduino derivative board”. Having a spare US$5 we placed an order and patiently waited for the board. Being such a low price it was guaranteed to raise the funding – but was it worth the money? Or the effort? Possibly.

The board

In typical fashion the board arrived in bare packaging:

 The Iteaduino Lite isn’t that surprising at first glance:

To the new observer, it looks like an Arduino board of some sort. Nice to see all those GPIO pins with double breakouts. No surprises underneath:

The URL on the bottom is incorrect, instead visit http://imall.iteadstudio.com/iteaduino-lite.html. Looking at the board in more detail, there are some interesting points of difference with the usual Arduino Uno and compatibles.

The USB interface is handled with the Silabs CP2102 USB to UART bridge IC:

The next difference is the power circuitry – instead of using a linear voltage regulator, Itead have used a contemporary DC-DC converter circuit which can accept between 7 and 24V DC:

Furthermore, the entire board can operate at either 5V or 3.3V, which is selected with the slide switch in the above image. Finally – the microcontroller. Instead of an Atmel product, Itead have chosen the LogicGreen LGT8F88 microcontroller, a domestic Chinese product:

And there are only two LEDs on the Iteaduino Lite, for power and D13. The LED on D13 ins’t controlled via a MOSFET like other Arduino-compatibles, instead it’s simply connected to GND via a 1kΩ resistor.

Getting started with the Iteaduino Lite

The stacking header sockets will need to be soldered in – the easiest way is to insert them into the board, use an shield to hold them in and flip the lot upside down:

Which should give you neatly-installed headers:

Watch out for the corners of the board, they’re quite sharp. Next, you need to install the USB driver for the CP2102. My Windows 7 machine picked it up without any issues, however the drivers can be downloaded if necessary.

Finally a new board profile is required for the Arduino IDE. At the time of writing you’ll need Arduino IDE v1.0.5 r2. Download this zip file, and extract the contents into your ..\Arduino-1.0.5-r2\hardware folder. The option should now be available in the Tools > Board menu in the IDE, for example:

From this point you can run the blink example to check all is well. At this point you will realise one of the limitations of the Iteaduino Lite – memory. For example:

You only have 7168 bytes of memory for your sketches – compared to 32, 256 for an Arduino Uno or compatible. The reason for this is the small capacity of  …

The LogicGreen LGT8F88 microcontroller

This MCU is a Chinese company’s answer to the Atmel ATmega88A. You can find more details here, and Itead also sells them separately. The LGT8F88 offers us 8Kbyte of flash memory of which 0.7KB is used by bootloader, 1 KB of SRAM and 504 bytes (count ’em) of EEPROM. Apparently it can run at speeds of up to 32 MHz, however the LGT8F88 is set to 16 MHz for the Iteaduino Lite.

According to Logic Green, their LGT8F88 “introduce a smart instruction cache, which can fetch more instructions one time, effectively decrease memory accessing operations“. So to see if there’s a speed bump, we uploaded the following sketch – written by Steve Curd from the Arduino forum. It calculates Newton Approximation for pi using an infinite series:

//
// Pi_2
//
// Steve Curd
// December 2012
//
// This program approximates pi utilizing the Newton's approximation.  It quickly
// converges on the first 5-6 digits of precision, but converges verrrry slowly
// after that.  For example, it takes over a million iterations to get to 7-8
// significant digits.
//
// I wrote this to evaluate the performance difference between the 8-bit Arduino Mega,
// and the 32-bit Arduino Due.
// 

#define ITERATIONS 100000L    // number of iterations
#define FLASH 1000            // blink LED every 1000 iterations

void setup() {
  pinMode(13, OUTPUT);        // set the LED up to blink every 1000 iterations
  Serial.begin(57600);
}

void loop() {

  unsigned long start, time;
  unsigned long niter=ITERATIONS;
  int LEDcounter = 0;
  boolean alternate = false;
  unsigned long i, count=0;
  float x = 1.0;
  float temp, pi=1.0;

  Serial.print("Beginning ");
  Serial.print(niter);
  Serial.println(" iterations ...");
  Serial.println();

  start = millis();  
  for ( i = 2; i < niter; i++) {
    x *= -1.0;
    pi += x / (2.0f*(float)i-1.0f);
    if (LEDcounter++ > FLASH) {
      LEDcounter = 0;
      if (alternate) {
        digitalWrite(13, HIGH);
        alternate = false;
      } 
      else {
        digitalWrite(13, LOW);
        alternate = true;
      }
      temp = 40000000.0 * pi;
    }
  }
  time = millis() - start;

  pi = pi * 4.0;

  Serial.print("# of trials = ");
  Serial.println(niter);
  Serial.print("Estimate of pi = ");
  Serial.println(pi, 10);

  Serial.print("Time: "); 
  Serial.print(time); 
  Serial.println(" ms");

  delay(10000);
}

For a baseline comparison, an Arduno Uno R3 completes the calculations in 5563 ms:

… and the Iteaduino Lite completed it in 5052 ms:

So that’s around a 10% speed increase. Not bad at all. The LGT8F88 also has the requisite GPIO, SPI, and I2C available as per normal Arduino Uno boards. You can download the data sheet with more technical details from here. Frankly the LGT8F88 is an interesting contender in the marketplace, and if Logic Green can offer a DIP version at a good price, the ATtiny fans will have a field day. Time will tell.

Power Circuit

The DC-DC circuit promises 5V output, with up to 24V DC input – so we cranked the input to 24V,  put a 1A load on the 5V output – and put the DSO over 5V to measure the variations – with a neat result:

So no surprises there at all, the Iteaduino Lite gives you more flexible power supply options than the usual Arduino board. However an eagle-eyed reader notes that a few of the capacitors are only rated at 25V – especially the two right after the DC socket/Vin. You can see this in the schematic (.pdf). So take that into account, or drop your Vin to something more regular such as below 12V.

Conclusion

The Iteaduino Lite is an interesting experiment in bargain Arduino-compatible boards. However we say “why bother?” and just get a Uno R3-compatible board.

At the end of the day – why bother with this board? For a little extra you can get boards with the ATmega328P or 32U4 which gives you 100% compatibility. Nevertheless, this was an interesting experiment. Full-sized images are available on flickr. And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop”.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Review – Iteaduino Lite “nearly 100% Arduino-compatible” board appeared first on tronixstuff.

Tronixstuff 30 Jan 23:01

Sassor wants to let users know just how much electricity their gadgets are wasting (hands-on)

Everyone knows that their game consoles, appliances and HDTVs are energy vampires, and while Energy Star-certified products tell us which gadgets are more green-friendly than others, we still don't know just how much juice they're actually sucking down in a given day. Enter Sassor, a start-up from Japan that's created a system to monitor the electrical consumption of anything plugged into a wall outlet -- from PCs to refrigerators. It tracks power consumption using current sensors clamped onto power cords, which communicate wirelessly via ZigBee with an module (based on an Arduino design) that uploads the info to the cloud.

Through the web portal, users can track energy consumption on a per-device basis in real-time, letting them figure out which gadgets are most responsible for their sky-high utility bill -- and take appropriate steps to correct the problem. Currently, it's aimed solely at businesses, but once Sassor's on its feet, funding-wise, the plan is to also put them in people's homes. The company told us it'll ditch ZigBee in favor of a WiFi solution in such future iterations, and it'll make an SDK and the system APIs available to all so that people can program for the platform and improve it in ways currently not contemplated. Alas, there's neither a timetable nor a price for the consumer version just yet, but you can see some pictures of the hardware's innards below.

Sassor wants to let users know just how much electricity their gadgets are wasting (hands-on) originally appeared on Engadget on Mon, 18 Jun 2012 21:59:00 EST. Please see our terms for use of feeds.

Permalink | Email this | Comments