Posts with «arduino» label

These interactive hair extensions can communicate over Bluetooth

For the most part, the next generation of wearable technology development has been focused around your wrist, arm, ears, and even your face. Hair, however, remains a unique and much less explored material… until now, at least.

That’s because the team of Sarah Sterman, Molly Nicholas, Christine Dierk, and Professor Eric Paulos at UC Berkeley’s Hybrid Ecologies Lab have created interactive hair extensions capable of changing shape and color, sensing touch, and communicating over Bluetooth. The aptly named “HairIO” conceals a skeleton of nitinol wire, a shape memory alloy (SMA) that morphs into different forms when exposed to heat. An Arduino Nano handles control, enabling it to respond to stimulus such as messages from your phone using an Adafruit Bluefruit board.

That’s not the only trick of these fibers, as they can use thermochromic pigments to change color along with the SMA action, and respond to touch via capacitive sensing.

Human hair is a cultural material, with a rich history displaying individuality, cultural expression and group identity. It is malleable in length, color and style, highly visible, and embedded in a range of personal and group interactions. As wearable technologies move ever closer to the body, and embodied interactions become more common and desirable, hair presents a unique and little-explored site for novel interactions. In this paper, we present an exploration and working prototype of hair as a site for novel interaction, leveraging its position as something both public and private, social and personal, malleable and permanent. We develop applications and interactions around this new material in HairIO: a novel integration of hair-based technologies and braids that combine capacitive touch input and dynamic output through color and shape change. Finally, we evaluate this hair-based interactive technology with users, including the integration of HairIO within the landscape of existing wearable and mobile technologies.

Be sure to check out the video below and read more in the team’s tutorial here!

Arduino Blog 20 Mar 14:21

Parts Bin Spooky Eye Build

Halloween is a great holiday for hacks, bringing out the creativity in even the most curmudgeonly wielder of a soldering iron. [tdragger] was looking to have some good old fashioned Halloween fun, and got to thinking – putting together this great Spooky Eyes build in their attic window.

The effect itself is simple – just two glowing orange LEDs spaced the right distance apart, placed in the highest window in the house. As every young child knows, the attic is almost the spookiest room in the house, second only to the basement.

Various effects were programmed in to the Arduino running the show, like breathing and blinking effects, to give that frightful character. For maintenance and programming purposes, [tdragger] wanted to have the Arduino remotely mounted, and searched for a solution. Rather than leaning on a wireless setup or something modern and off-the-shelf, instead some old RJ11 telephone extension cables were pressed into service. These allowed the eyes to be placed in the window, allowing the Arduino to be placed in a more accessible location.

It’s a basic project, but one that has a good fun factor. Sometimes it’s good to use what you’ve got to hand, so that the buzz of enjoyment isn’t dampened by the long wait for shipping. For something bigger, check out this giant staring eyeball.

Hack a Day 20 Mar 06:00

Control your computer sheet music with the PartitionsDuino

Performing an instrument well is hard enough, but flipping through sheet music while playing can slightly delay things in the best case, or can cause you to lose your concentration altogether. Music displayed on a computer is a similar story; however, Maxime Boudreau has a great solution using an Arduino Nano inside of a 3D-printed pedal assembly.

When set up with software found here, Boudreau’s DIY device allows you to control PDF sheet music on your laptop with the tap of a foot. While designed to work with a macOS app, there’s no reason something similar couldn’t be worked out under Windows or Linux as needed.

Check it out in action below!

4 Ways to Control Electronic Relays

There are plenty of ways to use relays, and each method can achieve several different results. Check out this step by step guide to figure out what you need.

Read more on MAKE

The post 4 Ways to Control Electronic Relays appeared first on Make: DIY Projects and Ideas for Makers.

This Pong clock displays the time and temperature in score-like fashion

If you need to get creative with something useful, clocks are always great objects to hack together. One idea, in particular, is this Pong Clock from Brett Oliver.

Oliver’s Arduino-powered device is based off of a similar project by Nick Hall, and plays itself in Pong, winning and losing to show the correct time as the score. This version adds a temperature display, countdown timer, and an excellent enclosure made out of what was once a cheap jewelry box.

The results are excellent enough to place in a stylish kitchen or living room, and looks like an approachable build. You can check out the project in the video below and find more details Oliver’s write-up here.

Pipe Your Way Through The Jams

Playing the bagpipes is an art that takes a significant effort to master, both in keeping a constant air supply through balancing blowstick and bag and in learning the finger positions on the chanter. This last task we are told requires constant finger practice, and a favorite place for this is on the steering wheel as a would-be piper drives. [DZL] therefore took this to the next level, placing touch sensors round a car steering wheel that could be interpreted by an Arduino Pro Mini to produce a passable facsimile of a set of bagpipes via an in-car FM transmitter. It lacks the drone pipes of the real thing, but how many other Škodas feature inbuilt piping?

We’ve covered an unexpected number of bagpipe projects over the years, but never had a close look at this rather fascinating musical instrument. If you are curious, the US Coast Guard pipe band has a short guide to its parts, and we’ve brought you a set of homemade pipes built from duct tape and PVC pipe. They may once have been claimed as an instrument of war, but they seem to also be a favorite instrument of hardware hackers.

Thanks [Sophi] for the tip.

Hack a Day 18 Mar 12:00

RFID Unlock Your PC, Because You’re 1337

Ever wanted to feel like one of those movie hackers from the late 90s? Yes, your basement’s full of overclocked Linux rigs and you’ve made sure all your terminal windows are set to green text on a black background, but that’s not always enough. What you need is an RFID tag that unlocks your PC when you touch the reader with your RFID cardOnly then may you resume blasting away at your many keyboards in your valiant attempts to hack the mainframe.

[Luke] brings us this build, having wanted an easier way to log in quickly without foregoing basic security. Seeing as an RC522 RFID reader was already on hand, this became the basis for the project. The reader is laced up with a Sparkfun Pro Micro Arduino clone, with both devices serendipitously running on 3.3V, obviating the need for any level shifters. Code is simple, based on the existing Arduino RC522 library. Upon a successful scan of the correct tag, the Arduino acts as a HID keyboard and types the user’s password into the computer along with a carriage return, unlocking the machine. Simple!

Overall, it’s a tidy build that achieves what [Luke] set out to do. It’s something that could be readily replicated with a handful of parts and a day’s work. If you’re interested in the underlying specifics, we’ve discussed turning Arduinos into USB keyboards before.

Hack a Day 18 Mar 06:00

completely lost with rover 5 and dagu comotion shield

hi there,

 

I'm an app programmer trying to get into the hardware world. 

I bought myself an arduino uno a rover 5 2 motors and 2 encoders  and the comotion shield(https://robosavvy.com/store/dagu-commotion-motor-driver-shield.html)  hoping to be able to follow this tutorial :

https://create.arduino.cc/projecthub/15ashworthh/controlling-the-dagu-rover-5-66c8bf

I still can't figure which wires are for the encoders and which for the motors.

 

Am i being silly but I don't see it anywhere in the rover 5 manual~ :(

read more

completely lost with rover 5 and dagu comotion shield

hi there,

 

I'm an app programmer trying to get into the hardware world. 

I bought myself an arduino uno a rover 5 2 motors and 2 encoders  and the comotion shield(https://robosavvy.com/store/dagu-commotion-motor-driver-shield.html)  hoping to be able to follow this tutorial :

https://create.arduino.cc/projecthub/15ashworthh/controlling-the-dagu-rover-5-66c8bf

I still can't figure which wires are for the encoders and which for the motors.

 

Am i being silly but I don't see it anywhere in the rover 5 manual~ :(

read more

Balloons and Bubbles Make for Kid-Friendly Robot Deathmatch

Because nothing says “fun for kids” like barbed wire and hypodermic needles, here’s an interactive real-world game that everyone can enjoy. Think of it as a kinder, gentler version of Robot Wars, where the object of the game is to pop the balloon on the other player’s robot before yours get popped. Sounds simple, but the simple games are often the most engaging, and that sure seems to be the case here.

The current incarnation of “Bubble Blast” stems from a project [Niklas Roy] undertook for a festival in Tunisia in 2017. That first version used heavily hacked toy RC cars controlled with arcade joysticks. It was a big hit with the crowd, so [Niklas] built a second version for another festival, and incorporated lessons learned from version 1.0. The new robots are built from scratch from 3D-printed parts. Two motors drive each bot, with remote control provided by a 433-MHz transceiver module. The UI was greatly improved with big trackballs, also scratch built. The game field was expanded and extra obstacles were added, including a barbed wire border as a hazard to the festooned bots. And just for fun, [Niklas] added a bubble machine, also built from scratch.

The game looks like a ton of fun, and seems like one of those things you’ve got to shoo the adults away from so the kids can enjoy it too. But if you need more gore from your robot deathmatch than a limp balloon, here’s a tabletop robot war that’s sure to please.