Posts with «air» label

Better Air Quality Sensing with CO2

Measuring air quality, as anyone who has tried to tackle this problem can attest, is not as straightforward as it might seem. Even once the nebulous term “quality” is defined, most sensors use something as a proxy for overall air health. One common method is to use volatile organic compounds (VOCs) as this proxy but as [Larry Bank] found out, using these inside a home with a functional kitchen leads to a lot of inaccurate readings. In the search for a more reliable sensor, he built this project which uses CO2 to help gauge air quality.

Most of the reason that CO2 sensors aren’t used as air quality sensors is cost. They are much more expensive than VOC sensors, but [Larry] recently found one that was more affordable and decided to build this project around it. The prototype used an Arduino communicating over I2C to the sensor and an OLED screen, which he eventually put in a 3D printed case to carry around to sample CO2 concentration in various real-world locations. The final project uses a clever way of interfacing with the e-paper display that we featured earlier.

While CO2 concentration doesn’t tell the full story of air quality in a specific place, it does play a major role. [Larry] found concentrations as high as 3000 ppm in his home, which can cause a drop in cognitive function. He’s made some lifestyle changes as a result which he reports has had a beneficial impact. For human-occupied indoor spaces, CO2 can easily be the main contributor to poor air quality, and we’ve seen at least one other project to address this concern directly.

Hack a Day 22 Nov 03:00

Tiny Pipe Organ Needs Tiny Church

There are a lot of unusual listings on eBay. If you’re wondering why someone would have a need for shredded cash, or a switchblade comb, or some “unicorn meat” (whatever that is), we’re honestly wondering the same thing. Sometimes, though, a listing that most people would consider bizarre finds its way to the workbench of someone with a little imagination. That was the case when [tinkartank] found three pipe organ pipes on eBay, bought them, and then built his own drivers.

The pipes have pitches of C, D, and F# (which make, as far we can tell, a C add9 flat5 no3 chord). [tinkartank] started by firing up the CNC machine and creating an enclosure to mount the pipes to. He added a church-like embellishment to the front window, and then started working on the controls for the pipes. Each pipe has its own fan, each salvaged from a hot air gun. The three are controlled with an Arduino. [tinkartank] notes that the fan noise is audible over the pipes, but there does seem to be an adequate amount of air going to each pipe.

This project is a good start towards a fully functional organ, provided [tinkartank] gets lucky enough to find the rest of the pipes from the organ. He’s already dreaming about building a full-sized organ of sorts, but in the meantime it might be interesting to use his existing pipes to build something from Myst.


Filed under: musical hacks
Hack a Day 01 Oct 12:01
air  arduino  fan  heat gun  music  musical hacks  organ  pipe  sound  

Inflate Your Wearables Using Drone Motors and Pneumatic Air Muscles

Pump up your look using drone motors and pneumatic air muscles to give your wearables a hint of animation with soft robotics.

Read more on MAKE

The post Inflate Your Wearables Using Drone Motors and Pneumatic Air Muscles appeared first on Make: DIY Projects and Ideas for Makers.

Share hyperlocal air pollution data with Sensing Umbrella

The Sensing Umbrella is the second project I’m featuring on this blog (see the first), coming out of the class at  the Copenhagen Institute of Interaction Design called Connected Objects, with Massimo Banzi and Giorgio Olivero. 

The project created by a team of students Akarsh Sanghi, Saurabh Datta and Simon Herzog is a platform to gather, display, and share hyperlocal air pollution data:

Each umbrella serves as a node for measuring CO and NO2 pollution levels and can provide exceptionally granular data to pollution databases and for scientific analysis. Simultaneously, the light visualisations inside the umbrella respond to pollution levels in real time and spread awareness of air quality in the city for its inhabitants. The umbrella uses open hardware and software to gather and interpret data through a built-in sensor array, displays CO and NO2 pollution locally in two modes, and logs the timestamped and geolocated data to the cloud for analysis.

Check the video to watch the team introducing the project: