Posts with «wise clock 4» label

Buy Wise Clock 4 kit

The Wise Clock 4 kit includes the following parts (shown in the photo below):


















  • PCB;
  • SD card socket (pre-soldered);
  • DS3231 extremely accurate RTC (real time clock) chip, soldered to the board;
  • MIC5219 voltage regulator, soldered to the board;
  • 74HC125 level shifter (5V to 3V3), soldered to the board;
  • 2 SMD LEDs (soldered);
  • 3 SMD resistors (soldered);
  • ATmega644P, with the latest Wise Clock 4 software;
  • 40-pin socket; 
  • 16MHz crystal;
  • 2 x 22pF ceramic capacitors;
  • CR1220 backup battery for RTC;
  • holder for the coin battery;
  • 3 x right-angle push buttons;
  • 9 x 10k resistors;
  • 3 x 4k7 resistors;
  • piezo buzzer;
  • USB miniB connector;
  • 6-pin right-angle male header (FTDI connector);
  • two 2x8-pin female headers (display connectors);
  • two 10-pin 2mm female headers (XBee connectors);
  • 220/470 uF electrolytic capacitor;
  • 3 x 100nF decoupling capacitors.
Note that the first bunch of components in the list are SMDs and come soldered to the board (that is, I solder them for you).



   US$67, free shipping to North America

Please contact me for pricing to outside North America. (Usually, for Europe, the price is $5 more.)

To build a finished Wise Clock 4, you need to add your own 3216 display, which plugs directly into the board (no cables are required to connect the Wise Clock 4 board to the display). You will also need to build your own enclosure.

Assembling the Wise Clock 4 kit is very similar to assembling Wise Clock 3, shown here. (The few differences between the two kits are related to the XBee, and are very easy to figure out. Regardless, all new components are SMD and they come pre-soldered.)

If you want the "Complete Wise Clock 4 kit", that includes the 3216 display and a simple yet elegant enclosure, please visit this page.

The ATmega644P processor comes already loaded with the latest software, so you don't need to use the Arduino IDE to compile and upload the code. Essentially, after soldering all components in place, Wise Clock  4 should work right away.

Upgrading the software on Wise Clock 4 (when a new release is published) is similar to Wise Clock 3, and this process is detailed here.

Also note that, although Wise Clock 4 has support for the XBee RF wireless modules, no XBee module is included in this kit.

Buy Wise Clock 4 kit

The Wise Clock 4 kit includes the following parts (shown in the photo below):


















  • PCB;
  • SD card socket (pre-soldered);
  • DS3231 extremely accurate RTC (real time clock) chip, soldered to the board;
  • MIC5219 voltage regulator, soldered to the board;
  • 74HC125 level shifter (5V to 3V3), soldered to the board;
  • 2 SMD LEDs (soldered);
  • 3 SMD resistors (soldered);
  • ATmega644P, with the latest Wise Clock 4 software;
  • 40-pin socket; 
  • 16MHz crystal;
  • 2 x 22pF ceramic capacitors;
  • CR1220 backup battery for RTC;
  • holder for the coin battery;
  • 3 x right-angle push buttons;
  • 9 x 10k resistors;
  • 3 x 4k7 resistors;
  • piezo buzzer;
  • USB miniB connector;
  • 6-pin right-angle male header (FTDI connector);
  • two 2x8-pin female headers (display connectors);
  • two 10-pin 2mm female headers (XBee connectors);
  • 220/470 uF electrolytic capacitor;
  • 3 x 100nF decoupling capacitors.
Note that the first bunch of components in the list are SMDs and come soldered to the board (that is, I solder them for you).



   US$67, free shipping to North America

Please contact me for pricing to outside North America. (Usually, for Europe, the price is $5 more.)

To build a finished Wise Clock 4, you need to add your own 3216 display, which plugs directly into the board (no cables are required to connect the Wise Clock 4 board to the display). You will also need to build your own enclosure.

Assembling the Wise Clock 4 kit is very similar to assembling Wise Clock 3, shown here. (The few differences between the two kits are related to the XBee, and are very easy to figure out. Regardless, all new components are SMD and they come pre-soldered.)

If you want the "Complete Wise Clock 4 kit", that includes the 3216 display and a simple yet elegant enclosure, please visit this page.

The ATmega644P processor comes already loaded with the latest software, so you don't need to use the Arduino IDE to compile and upload the code. Essentially, after soldering all components in place, Wise Clock  4 should work right away.

Upgrading the software on Wise Clock 4 (when a new release is published) is similar to Wise Clock 3, and this process is detailed here.

Also note that, although Wise Clock 4 has support for the XBee RF wireless modules, no XBee module is included in this kit.


Testing the XBee on Wise Clock 4

To test the XBee on Wise Clock 4 I used the sketch below (upload it to the board; display is not required).

int nCount = 0;
void setup()
{
  Serial.begin(9600);
  Serial1.begin(9600);
  Serial.println("WC4 XBee ready for comm..."); 
}


void loop()
{
  // read from port 1, report characters on port 0:
  while (Serial1.available())
  {
    char inChar = Serial1.read();
    Serial.print(inChar); 
  }
  Serial1.print("WC4 XBee transmit ");
  Serial1.print(nCount++);
  Serial1.print(", ");
  Serial1.println(millis());
  delay(3000);
}

Notice the use of Serial1 instance to talk to the XBee, since this is connected to the second hardware serial port of the ATmega644P (D10/D11, pins 16/17). Had Sanguino offered no support for the second USART, we could have used NewSoftwareSerial library.

The second XBee is linked directly to a terminal (e.g. HyperTerminal in Windows, or Terminal panel in the X-CTU application from Digi). I personally used the XBee Adapter from Adafruit, connected through the FTDI cable to the PC as shown here.

Once this XBee test passed, you can adapt the Wise Clock 4 software to display any message sent to it from a second XBee. A simple hack is to add to the function fetchMessage() in file WiseClock4.cpp, as shown below:

void WiseClock4::fetchMessage()
{
  // new code for XBee............
  // read from XBee into the "personalized message" buffer;
  char* Ptr1 = &personalMsg[0];
  if (Serial1.available())
  {
    while (Serial1.available())
    {
      *Ptr1++ = Serial1.read();
    }
    *Ptr1 = 0;
  }

  // existing code................
  strcpy(msgLine, "      ");

Now, instead of the personalized message (read from file message.txt on the SD card) you will get whatever is sent from the terminal application (second XBee).

Don't forget to add this line in function setup (file WiseClock4.pde):

  Serial1.begin(9600);


Testing the XBee on Wise Clock 4

To test the XBee on Wise Clock 4 I used the sketch below (upload it to the board; display is not required).

int nCount = 0;
void setup()
{
  Serial.begin(9600);
  Serial1.begin(9600);
  Serial.println("WC4 XBee ready for comm..."); 
}


void loop()
{
  // read from port 1, report characters on port 0:
  while (Serial1.available())
  {
    char inChar = Serial1.read();
    Serial.print(inChar); 
  }
  Serial1.print("WC4 XBee transmit ");
  Serial1.print(nCount++);
  Serial1.print(", ");
  Serial1.println(millis());
  delay(3000);
}

Notice the use of Serial1 instance to talk to the XBee, since this is connected to the second hardware serial port of the ATmega644P (D10/D11, pins 16/17). Had Sanguino offered no support for the second USART, we could have used NewSoftwareSerial library.

The second XBee is linked directly to a terminal (e.g. HyperTerminal in Windows, or Terminal panel in the X-CTU application from Digi). I personally used the XBee Adapter from Adafruit, connected through the FTDI cable to the PC as shown here.

Once this XBee test passed, you can adapt the Wise Clock 4 software to display any message sent to it from a second XBee. A simple hack is to add to the function fetchMessage() in file WiseClock4.cpp, as shown below:

void WiseClock4::fetchMessage()
{
  // new code for XBee............
  // read from XBee into the "personalized message" buffer;
  char* Ptr1 = &personalMsg[0];
  if (Serial1.available())
  {
    while (Serial1.available())
    {
      *Ptr1++ = Serial1.read();
    }
    *Ptr1 = 0;
  }

  // existing code................
  strcpy(msgLine, "      ");

Now, instead of the personalized message (read from file message.txt on the SD card) you will get whatever is sent from the terminal application (second XBee).

Don't forget to add this line in function setup (file WiseClock4.pde):

  Serial1.begin(9600);



Wise Clock 4

The new Wise Clock 4 board has two main improvements over Wise Clock 3:
  • support for the XBee family of wireless RF modules (XBee, XBee Pro, XBee Wi-Fi, and the similar foot-printed Roving Networks WiFly RN-XV);
  • ability to easily connect a second display; this is achieved by moving the power connector on the "right" side, plus bringing the extension display connector closer to the bottom of the board.


















Wise Clock 4 is "almost" compatible with Wise Clock 3. To run the existing sketch on Wise Clock 4, two changes are required:
  • Plus button is now on D3 (D2 is now designated for interrupts from RTC);
  • D15 is now connected to the CS line of the display, replacing D11, which is now used for communication with the Xbee module.


















As can be noticed from the photos, a few more components are in SMD package (necessary to keep the size of the board to a minimum, to fit in the back of the 3216 display):

  • the level shifting buffer 74HC125;
  • three optional LEDs: 2 for the XBee communication lines, one for power;
  • the 3V3 voltage regulator MIC5219, capable of providing 500mA.


Updated Nov 26, 2011
The schematic, pictured below, can be downloaded from here (Eagle file).















The board layout, shown below, can be downloaded from here.