Posts with «wearable technology» label

GymSoles ensure correct form and posture during your workout

While you can get a very good workout on your own, it’s ideal if you have someone else watching over your form. This, of course, isn’t always practical, so researchers at the University of Auckland’s Augmented Human Lab have prototyped a wearable system called GymSoles to help. 

GymSoles consist of a pressure-sensitive insole that is used to determine a foot’s center of pressure, and thus infer whether or not the participant is keeping the weights in the proper position relative to his or her body—perfect for exercises like squats and deadlifts. 

Feedback is provided visually as well as through tactile feedback via eight vibrating motors, allowing participants to modify technique without having to focus on a screen. A computer is used to control the device using an Arduino Uno with motor drivers and an I2C multiplexer.

The correct execution of exercises, such as squats and dead-lifts, is essential to prevent various bodily injuries. Existing solutions either rely on expensive motion tracking or multiple Inertial Measurement Units (IMU) systems require an extensive set-up and individual calibration. This paper introduces a proof of concept, GymSoles, an insole prototype that provides feedback on the Centre of Pressure (CoP) at the feet to assist users with maintaining the correct body posture, while performing squats and dead-lifts. GymSoles was evaluated with 13 users in three conditions: 1) no feedback, 2) vibrotactile feedback, and 3) visual feedback. It has shown that solely providing feedback on the current CoP, results in a significantly improved body posture.

Smart earbud lets you control your phone with facial expressions

After much experimentation, researchers at Fraunhofer Institute for Computer Graphics Research in Rostock and the University of Cologne in Germany have developed an electronically-augmented earplug that can read facial expressions and convert them into controls for your smartphone. For example, you may soon be able to answer a call with a wink or launch an app by moving your head to one side.

The prototype of this EarFieldSensing, or EarFS, technology consists of the earbud itself, a reference electrode attached to the user’s earlobe, and an Arduino along with four sensing shields in a companion bag.

Currently, the system can recognize five expressions–winking, smiling, opening your mouth, making a ‘shh’ sound, and turning your head the right–with over 85% accuracy while walking, and even better when sitting. Hands-free emojis would be an obvious use case, but perhaps it could be employed for covert signaling as well. Was that a nice smile, or are you calling in backup? It could also be quite useful while driving or for those with disabilities.

You can read more about EarFS in the team’s paper and in this New Scientist article.

Photo: Denys J.C. Matthies / Daily Mail

Skintillates: Temporary tattoos with embedded electronics

Developed by a team of UC Berkeley students, Skintillates is a wearable technology that mimics tattoos.

When you think of temporary tattoos, you likely think of something that comes out of a gumball dispenser, or perhaps “art” that you got on a spring break trip. As interesting as those may be, Skintillates is taking things to the next level.

These “epidermal wearable interactive devices” can serve as everything from passive and active on-skin displays, to capacitive and resistive sensors for controlling gadgets, to strain gauges for posture detection.

Using several layers allows these designs to stick to the skin, integrate various electronics, and have visible art for others to see. Electronics can mean that the tattoos can integrate sensors, or perhaps even LEDs. In at least one case, these lights are programmed to flash along with the beat of music, driven by an Arduino hidden under the wearer’s clothing.

Just like the traditional temporary tattoos often worn by children and adults alike, Skintillates flex naturally with the user’s skin. Our simple fabrication technique also enables users to freely design and print with a full range of colors to create application-specific customized designs.

You can find more on this project on the Hybrid Ecologies Lab page and read the team’s entire paper here.

(Photos: Eric Paulos)

Cosmic Bitcasting is a wearable radiation detector

Cosmic Bitcasting is a digital art and science project emerging from the idea of connecting the human body with the cosmos by creating a wearable device with embedded light, sound and vibration that will provide sensory information on the invisible cosmic radiation that surrounds us. This open-source project actually works by detecting secondary muons generated by cosmic rays hitting the Earth’s atmosphere that pass through the body.

Artist Afroditi Psarra and experimental physicist Cécile Lapoire worked together to develop a prototype of the wearable cosmic ray detector during a one-month residency at Etopia in Zaragoza, and is currently on display at the Etopia-Center for Art and Technology in Zaragoza as part of the exhibition REVERBERADAS.

Cosmic Bitcasting is comprised of an Arduino Lilypad, High Flex 3981 7×1 fach Kupfer blank conductive thread from Karl Grimm, Pure Copper Polyester Taffeta Fabric by Less EMF, white SMD LEDs, a coin cell vibration motor, and an IRL3103 MOSFET with a 100 Ohm resistor to drive the motor.

Intrigued? Take a look at the video below and read the diary of the residency to learn more!