Posts with «twitter» label

Bluetooth Thingies at Maker Faire

In case you haven’t noticed, one of the more popular themes for new dev boards is Bluetooth. Slap a Bluetooth 4.0 module on a board, and you really have something: just about every phone out there has it, and the Low Energy label is great for battery-powered Internets of Things.

Most of these boards fall a little short. It’s one thing to throw a Bluetooth module on a board, but building the software to interact with this board is another matter entirely. Revealing Hour Creations is bucking that trend with their Tah board. Basically, it’s your standard Arduino compatible board with a btle module. What they’ve done is add the software for iOS and Android that makes building stuff easy.

Putting Bluetooth on a single board is one thing, but how about putting Bluetooth on everything. SAM Labs showed off their system of things at Maker Faire with LEDs, buttons, fans, motors, sensors, and just about every electrical component you can imagine.

All of these little boards come with a Bluetooth module and a battery. The software for the system is a graphical interface that allows you to draw virtual wires between everything. Connect a button to a LED in the software, and the LED will light up when the button is pressed. Move your mouse around the computer, and the button will turn on a motor when it’s pressed.

There are a few APIs that also come packaged into the programming environment – at the booth, you could open a fridge (filled with cool drinks that didn’t cost five dollars, a surprise for the faire) and it would post a tweet.


Filed under: hardware
Hack a Day 23 Sep 21:00

Arduino Tutorials – Chapter 30 – twitter

Learn how to tweet from your Arduino.

This is chapter thirty of our huge Arduino tutorial seriesUpdated 16/06/2014

In this article you will learn how to send messages from an Ethernet-enabled Arduino to twitter. For the uninitiated who may be thinking “what is all this twitter nonsense about?”, twitter is a form of microblogging. 

You can create a message with a maximum length of 140 characters, and broadcast this on the twitter service. For people to receive your messages (or tweets) they also need to be a member of twitter and choose to subscribe to your tweets.

Generally people will use the twitter service using one of two methods: either using a web browser, or using the twitter application on a smartphone or tablet computer. For example, here is a typical web browser view:

… and here is an example of a twitter application running on an Android OS smartphone:

The neat thing about twitter on a mobile device is that if your username is mentioned in a tweet, you will be notified pretty well immediately as long as you have mobile data access. More on that later. In some areas, you can set twitter to send tweets from a certain user to your mobile phone via SMS – however if doing so be careful to confirm possible charges to your mobile phone account.

Finally, if you are worried about privacy with regards to your tweets, you can set your account to private and only allow certain people to follow your tweets.

So let’s get started.

First of all – you will need a twitter account. If you do not have one, you can sign up for one here. If you already have a twitter account, you can always open more for other uses – such as an Arduino.

For example, my twitter account is @tronixstuff, but my demonstration machine twitter account is @tronixstuff2. Then I have set my primary account to follow my machine’s twitter account.

Now log into twitter with using the account you will have for your Arduino and visit this page and get yourself a token by following the Step One link. The process will take you through authorising the “tweet library” page to login to your twitter account – this is ok. It will then present you with a long text called a “token”, for example:

Save your token somewhere safe, as you will need to insert it into your Arduino sketch. Finally, don’t give it to others as then they will be able to post onto twitter using your account. Next, follow step two from the same page – which involves download and installation of the required Arduino library.

Now for the hardware.

You will need an Arduino Uno or compatible board with an Ethernet shield that uses the W5100 Ethernet controller IC (pretty much all of them) – or consider using a Freetronics EtherTen – as it has everything all on the one board, plus some extras:

Furthermore you will need to power the board via the external DC socket – the W5100 IC uses more current than the USB power can supply. A 9V 1A plug pack/wall wart will suffice. Finally it does get hot – so be careful not to touch the W5100 after extended use. In case you’re not sure – this is the W5100 IC:

If you’re looking for an Arduino-twitter solution with WiFi, check out the Arduino Yún tutorials.

From this point it would be a good idea to check your hardware is working. To do so, please run the webserver example sketch as explained in chapter sixteen (Ethernet). While you do that, we’ll have a break…

Sending your first tweet

If you want your Arduino to send a simple tweet consider the following sketch. We have a simple function tweet() which simply sends a line of text (which has a maximum length of 140 characters). Don’t forget to update your IP address, MAC address and token:

// Simple twitter interface

#include <SPI.h>
#include <Ethernet.h>
#include <Twitter.h>

// Alter IP address to suit your own network!
byte mac[] = {   0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // create MAC address for ethernet shield
byte ip[] = {   192, 168, 0, 99}; // choose your own IP for ethernet shield
Twitter twitter("aaaaaaa"); // replace aaaaaaa with your token

void setup()
{
  delay(5000);
  Ethernet.begin(mac, ip);
  Serial.begin(9600);
}

void tweet(char msg[])
{
  Serial.println("connecting ...");
  if (twitter.post(msg))
  {
    // Specify &Serial to output received response to Serial.
    // If no output is required, you can just omit the argument, e.g.
    // int status = twitter.wait();
    int status = twitter.wait(&Serial);
    if (status == 200)
    {
      Serial.println("OK.");
    } 
    else
    {
      Serial.print("failed : code ");
      Serial.println(status);
    }
  } 
  else
  {
    Serial.println("connection failed.");
  }
}

void loop()
{
  delay(1000);
  tweet("Purple monkey dishwasher");
  do{} while(1>0); // endless loop
}

You can check the status of the tweeting via the serial monitor. For example, if the tweet was successful you will see:

However if you try to send the same tweet more than once in a short period of time, or another error takes place – twitter will return an error message, for example:

And finally if it works, the tweet will appear:

Previously we mentioned that you can be alerted to a tweet by your mobile device. This can be done by putting your own twitter account name in the contents of the tweet.

For example – my normal twitter account is @tronixstuff. If I put the text “@tronixstuff” in the text tweeted by my Arduino’s twitter account – the twitter app on my smartphone will let me know I have been mentioned – as shown in the following video:

You may have noticed in the video that a text message arrived as well – that service is a function of my cellular carrier (Telstra) and may not be available to others. Nevertheless this is a neat way of getting important messages from your Arduino to a smart phone or other connected device.

Sending data in a tweet

So what if you have  a sensor or other device whose data you want to know about via twitter? You can send data generated from an Arduino sketch over twitter without too much effort.

In the following example we’ll send the value from analogue pin zero (A0) in the contents of a tweet. And by adding your twitter @username you will be notified by your other twitter-capable devices:

// Simple twitter interface

#include <SPI.h>
#include <Ethernet.h>
#include <Twitter.h>

// Alter IP address to suit your own network!
byte mac[] = {   0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // create MAC address for ethernet shield
byte ip[] = {   192, 168, 0, 99}; // choose your own IP for ethernet shield
Twitter twitter("aaaaaaa"); // replace aaaaaaa with your token

int analogZero;
char tweetText[140];

void setup()
{
  delay(5000);
  Ethernet.begin(mac, ip);
  Serial.begin(9600);
}

void tweet(char msg[])
{
  Serial.println("connecting ...");
  if (twitter.post(msg))
  {
    // Specify &Serial to output received response to Serial.
    // If no output is required, you can just omit the argument, e.g.
    // int status = twitter.wait();
    int status = twitter.wait(&Serial);
    if (status == 200)
    {
      Serial.println("OK.");
    } 
    else
    {
      Serial.print("failed : code ");
      Serial.println(status);
    }
  } 
  else
  {
    Serial.println("connection failed.");
  }
}

void loop()
{
  // get some data from A0. 
  analogZero=analogRead(0);

  // assemble message to send. This inserts the value of "analogZero" into the variable "tweetText" at point %d
  sprintf(tweetText, "Pin analogue zero reads: %d. @username.", analogZero); // change @username to your twitter account name

  delay(1000);
  tweet(tweetText);
  do{ } 
  while(1>0); // endless loop
}

You may have noticed a sneaky sprintf function in void loop(). This is used to insert the integer analogZero into the character array tweetText that we send with the tweet() function. And the results of the example:

So you can use the previous sketch as a framework to create your own Arduino-powered data twittering machine. Send temperature alerts, tank water levels, messages from an alarm system, or just random tweets to your loved one.

Conclusion

So there you have it, another useful way to send information from your Arduino to the outside world. Stay tuned for upcoming Arduino tutorials by subscribing to the blog, RSS feed (top-right), twitter or joining our Google Group. Big thanks to @neocat for their work with the twitter  Arduino libraries.

And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Tronixstuff 04 Dec 01:52

Arduino Tutorials – Chapter 30 – twitter

Learn how to tweet from your Arduino.

This is chapter thirty of our huge Arduino tutorial seriesUpdated 16/06/2014

In this article you will learn how to send messages from an Ethernet-enabled Arduino to twitter. For the uninitiated who may be thinking “what is all this twitter nonsense about?”, twitter is a form of microblogging. 

You can create a message with a maximum length of 140 characters, and broadcast this on the twitter service. For people to receive your messages (or tweets) they also need to be a member of twitter and choose to subscribe to your tweets.

Generally people will use the twitter service using one of two methods: either using a web browser, or using the twitter application on a smartphone or tablet computer. For example, here is a typical web browser view:

… and here is an example of a twitter application running on an Android OS smartphone:

The neat thing about twitter on a mobile device is that if your username is mentioned in a tweet, you will be notified pretty well immediately as long as you have mobile data access. More on that later. In some areas, you can set twitter to send tweets from a certain user to your mobile phone via SMS – however if doing so be careful to confirm possible charges to your mobile phone account.

Finally, if you are worried about privacy with regards to your tweets, you can set your account to private and only allow certain people to follow your tweets.

So let’s get started.

First of all – you will need a twitter account. If you do not have one, you can sign up for one here. If you already have a twitter account, you can always open more for other uses – such as an Arduino.

For example, my twitter account is @tronixstuff, but my demonstration machine twitter account is @tronixstuff2. Then I have set my primary account to follow my machine’s twitter account.

Now log into twitter with using the account you will have for your Arduino and visit this page and get yourself a token by following the Step One link. The process will take you through authorising the “tweet library” page to login to your twitter account – this is ok. It will then present you with a long text called a “token”, for example:

Save your token somewhere safe, as you will need to insert it into your Arduino sketch. Finally, don’t give it to others as then they will be able to post onto twitter using your account. Next, follow step two from the same page – which involves download and installation of the required Arduino library.

Now for the hardware.

You will need an Arduino Uno or compatible board with an Ethernet shield that uses the W5100 Ethernet controller IC (pretty much all of them) – or consider using a Freetronics EtherTen – as it has everything all on the one board, plus some extras:

Furthermore you will need to power the board via the external DC socket – the W5100 IC uses more current than the USB power can supply. A 9V 1A plug pack/wall wart will suffice. Finally it does get hot – so be careful not to touch the W5100 after extended use. In case you’re not sure – this is the W5100 IC:

If you’re looking for an Arduino-twitter solution with WiFi, check out the Arduino Yún tutorials.

From this point it would be a good idea to check your hardware is working. To do so, please run the webserver example sketch as explained in chapter sixteen (Ethernet). While you do that, we’ll have a break…

Sending your first tweet

If you want your Arduino to send a simple tweet consider the following sketch. We have a simple function tweet() which simply sends a line of text (which has a maximum length of 140 characters). Don’t forget to update your IP address, MAC address and token:

// Simple twitter interface

#include <SPI.h>
#include <Ethernet.h>
#include <Twitter.h>

// Alter IP address to suit your own network!
byte mac[] = {   0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // create MAC address for ethernet shield
byte ip[] = {   192, 168, 0, 99}; // choose your own IP for ethernet shield
Twitter twitter("aaaaaaa"); // replace aaaaaaa with your token

void setup()
{
  delay(5000);
  Ethernet.begin(mac, ip);
  Serial.begin(9600);
}

void tweet(char msg[])
{
  Serial.println("connecting ...");
  if (twitter.post(msg))
  {
    // Specify &Serial to output received response to Serial.
    // If no output is required, you can just omit the argument, e.g.
    // int status = twitter.wait();
    int status = twitter.wait(&Serial);
    if (status == 200)
    {
      Serial.println("OK.");
    } 
    else
    {
      Serial.print("failed : code ");
      Serial.println(status);
    }
  } 
  else
  {
    Serial.println("connection failed.");
  }
}

void loop()
{
  delay(1000);
  tweet("Purple monkey dishwasher");
  do{} while(1>0); // endless loop
}

You can check the status of the tweeting via the serial monitor. For example, if the tweet was successful you will see:

However if you try to send the same tweet more than once in a short period of time, or another error takes place – twitter will return an error message, for example:

And finally if it works, the tweet will appear:

Previously we mentioned that you can be alerted to a tweet by your mobile device. This can be done by putting your own twitter account name in the contents of the tweet.

For example – my normal twitter account is @tronixstuff. If I put the text “@tronixstuff” in the text tweeted by my Arduino’s twitter account – the twitter app on my smartphone will let me know I have been mentioned – as shown in the following video:

You may have noticed in the video that a text message arrived as well – that service is a function of my cellular carrier (Telstra) and may not be available to others. Nevertheless this is a neat way of getting important messages from your Arduino to a smart phone or other connected device.

Sending data in a tweet

So what if you have  a sensor or other device whose data you want to know about via twitter? You can send data generated from an Arduino sketch over twitter without too much effort.

In the following example we’ll send the value from analogue pin zero (A0) in the contents of a tweet. And by adding your twitter @username you will be notified by your other twitter-capable devices:

// Simple twitter interface

#include <SPI.h>
#include <Ethernet.h>
#include <Twitter.h>

// Alter IP address to suit your own network!
byte mac[] = {   0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // create MAC address for ethernet shield
byte ip[] = {   192, 168, 0, 99}; // choose your own IP for ethernet shield
Twitter twitter("aaaaaaa"); // replace aaaaaaa with your token

int analogZero;
char tweetText[140];

void setup()
{
  delay(5000);
  Ethernet.begin(mac, ip);
  Serial.begin(9600);
}

void tweet(char msg[])
{
  Serial.println("connecting ...");
  if (twitter.post(msg))
  {
    // Specify &Serial to output received response to Serial.
    // If no output is required, you can just omit the argument, e.g.
    // int status = twitter.wait();
    int status = twitter.wait(&Serial);
    if (status == 200)
    {
      Serial.println("OK.");
    } 
    else
    {
      Serial.print("failed : code ");
      Serial.println(status);
    }
  } 
  else
  {
    Serial.println("connection failed.");
  }
}

void loop()
{
  // get some data from A0. 
  analogZero=analogRead(0);

  // assemble message to send. This inserts the value of "analogZero" into the variable "tweetText" at point %d
  sprintf(tweetText, "Pin analogue zero reads: %d. @username.", analogZero); // change @username to your twitter account name

  delay(1000);
  tweet(tweetText);
  do{ } 
  while(1>0); // endless loop
}

You may have noticed a sneaky sprintf function in void loop(). This is used to insert the integer analogZero into the character array tweetText that we send with the tweet() function. And the results of the example:

So you can use the previous sketch as a framework to create your own Arduino-powered data twittering machine. Send temperature alerts, tank water levels, messages from an alarm system, or just random tweets to your loved one.

Conclusion

So there you have it, another useful way to send information from your Arduino to the outside world. Stay tuned for upcoming Arduino tutorials by subscribing to the blog, RSS feed (top-right), twitter or joining our Google Group. Big thanks to @neocat for their work with the twitter  Arduino libraries.

And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Arduino Tutorials – Chapter 30 – twitter appeared first on tronixstuff.

Tronixstuff 04 Dec 01:52

Tutorial – twitter and the Arduino Yún

Introduction

After spending almost $100 on an Arduino Yún to see what the fuss was about, it seemed like a good idea to find and demonstrate some uses for it. So in this article we’ll examine how your Yún can send a tweet using some simple example sketches – and the first of several Arduino Yún-specific tutorials.

Getting Started

If you haven’t already done so, ensure your Arduino Yún can connect to your network via WiFi or cable – and get a Temboo account (we run through this here). And you need (at the time of writing) IDE version 1.5.4 which can be downloaded from the Arduino website. Finally, if you don’t have a twitter account – go get one.

Sending a tweet from your Yún

Thanks to Arduino and Temboo, 99% of the work is already done for you. To send a tweet requires the Arduino sketch, a header file with your Temboo account details, and also the need to register an application in the twitter development console.

Don’t panic, just follow the “Get Set Up” instructions from the following page. When you do – make sure you’re logged into the Temboo website, as it will then populate the header file with your Temboo details for you. During the twitter application stage, don’t forget to save your OAuth settings which will appear in the “OAuth Tool” tab in the twitter developer page, for example:

… as they are copied into every sketch starting from the line:

const String TWITTER_ACCESS_TOKEN =

When you save the sketch, make sure you place the header file with the name TembooAccount.h in the same folder as your sketch. You know this has been successful when opening the sketch, as you will see the header file in a second tab, for example:

Finally, if you’re sharing code with others, remove your OAuth and TembooAccount.h details otherwise they can send tweets on your behalf.

OK – enough warnings. If you’ve successfully created your Temboo account, got your twitter OAuth details, fed them all into the sketch and header file, then saved (!) and uploaded your sketch to the Arduino Yún – a short tweet will appear on your timeline, for example:

If nothing appears on your twitter feed, open the serial monitor in the IDE and see what messages appear. It will feed back to you the error message from twitter, which generally indicates the problem.

Moving on, let’s examine how to send tweets with your own information. In the following example sketch we send the value resulting from analogRead(0) and text combined together in one line. Don’t forget twitter messages (tweets) have a maximum length of 140 characters. We’ve moved all the tweet-sending into one function tweet(), which you can then call from your sketch when required – upon an event and so on. The text and data to send is combined into a String in line 26:

#include <Bridge.h>
#include <Temboo.h>
#include "TembooAccount.h" // contains Temboo account information
                           // as described in the footer comment below

const String TWITTER_ACCESS_TOKEN = "aaaa";
const String TWITTER_ACCESS_TOKEN_SECRET = "bbbb";
const String TWITTER_CONSUMER_KEY = "ccccc";
const String TWITTER_CONSUMER_SECRET = "dddd";

int analogZero;

void setup() 
{
  Serial.begin(9600);
  delay(4000);
  while(!Serial);
  Bridge.begin();
}

void tweet()
{
    Serial.println("Running tweet() function");

    // define the text of the tweet we want to send
    String tweetText("The value of A0 is " + String(analogZero) + ". Hooray for twitter");

    TembooChoreo StatusesUpdateChoreo;
    // invoke the Temboo client
    // NOTE that the client must be reinvoked, and repopulated with
    // appropriate arguments, each time its run() method is called.
    StatusesUpdateChoreo.begin();
    // set Temboo account credentials
    StatusesUpdateChoreo.setAccountName(TEMBOO_ACCOUNT);
    StatusesUpdateChoreo.setAppKeyName(TEMBOO_APP_KEY_NAME);
    StatusesUpdateChoreo.setAppKey(TEMBOO_APP_KEY);
    // identify the Temboo Library choreo to run (Twitter > Tweets > StatusesUpdate)
    StatusesUpdateChoreo.setChoreo("/Library/Twitter/Tweets/StatusesUpdate");
    // add the Twitter account information
    StatusesUpdateChoreo.addInput("AccessToken", TWITTER_ACCESS_TOKEN);
    StatusesUpdateChoreo.addInput("AccessTokenSecret", TWITTER_ACCESS_TOKEN_SECRET);
    StatusesUpdateChoreo.addInput("ConsumerKey", TWITTER_CONSUMER_KEY);    
    StatusesUpdateChoreo.addInput("ConsumerSecret", TWITTER_CONSUMER_SECRET);
    // and the tweet we want to send
    StatusesUpdateChoreo.addInput("StatusUpdate", tweetText);
    // tell the Process to run and wait for the results. The 
    // return code (returnCode) will tell us whether the Temboo client 
    // was able to send our request to the Temboo servers
    unsigned int returnCode = StatusesUpdateChoreo.run();
    // a return code of zero (0) means everything worked
    if (returnCode == 0) {
        Serial.println("Success! Tweet sent!");
    } else {
      // a non-zero return code means there was an error
      // read and print the error message
      while (StatusesUpdateChoreo.available()) {
        char c = StatusesUpdateChoreo.read();
        Serial.print(c);
      }
    } 
    StatusesUpdateChoreo.close();
    // do nothing for the next 90 seconds
    Serial.println("Waiting...");
    delay(90000);
}

void loop()
{
  // get some data from A0. 
  analogZero=analogRead(0);
  tweet();
  do {} while (1); // do nothing
}

Which results with the following example tweet:

With the previous example sketch you can build your own functionality around the tweet() function to send data when required. Recall that the data to send as a tweet is combined into a String at line 26.

Please note that you can’t blast out tweets like a machine, for two reasons – one, twitter doesn’t like rapid automated tweeting – and two, you only get 1000 free calls on your Temboo account per month. If you need more, the account needs to be upgraded at a cost.

Conclusion

Well the Yún gives us another way to send data out via twitter. It wasn’t the cheapest way of doing so, however it was quite simple. And thus the trade-off with the Arduino platform – simplicity vs. price. If there is demand, we’ll examine more connected functions with the Yún.

And if you’re interested in learning more about Arduino, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Tutorial – twitter and the Arduino Yún appeared first on tronixstuff.

Tronixstuff 29 Oct 05:40

Book – “Arduino Workshop – A Hands-On Introduction with 65 Projects”

Over the last few years I’ve been writing a few Arduino tutorials, and during this time many people have mentioned that I should write a book. And now thanks to the team from No Starch Press this recommendation has morphed into my new book – “Arduino Workshop“:

Although there are seemingly endless Arduino tutorials and articles on the Internet, Arduino Workshop offers a nicely edited and curated path for the beginner to learn from and have fun. It’s a hands-on introduction to Arduino with 65 projects – from simple LED use right through to RFID, Internet connection, working with cellular communications, and much more.

Each project is explained in detail, explaining how the hardware an Arduino code works together. The reader doesn’t need any expensive tools or workspaces, and all the parts used are available from almost any electronics retailer. Furthermore all of the projects can be finished without soldering, so it’s safe for readers of all ages.

The editing team and myself have worked hard to make the book perfect for those without any electronics or Arduino experience at all, and it makes a great gift for someone to get them started. After working through the 65 projects the reader will have gained enough knowledge and confidence to create many things – and to continue researching on their own. Or if you’ve been enjoying the results of my thousands of hours of work here at tronixstuff, you can show your appreciation by ordering a copy for yourself or as a gift

You can review the table of contents, index and download a sample chapter from the Arduino Workshop website.

Arduino Workshop is available from No Starch Press in printed or ebook (PDF, Mobi, and ePub) formats. Ebooks are also included with the printed orders so you can get started immediately.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The post Book – “Arduino Workshop – A Hands-On Introduction with 65 Projects” appeared first on tronixstuff.

Twitter Roach takes guidance from tweets, ushers in a terrifying 2013 (video)

We've already seen cockroaches turned into unwitting puppets for human overlords, but never have we seen dominance quite so casual as with Brittany Ransom's recent Twitter Roach art project. While part of the exhibition, one of the insects wore a modified RoboRoach backpack with an Arduino add-on that took commands from Twitter: mentions including specific hashtags steered the roach left or right by stimulating its nerves. Yes, that meant the poor roach rarely had the dignity of seeing its master face to face, although there's some consolation in knowing that it wore the backpack for limited periods and had a required 30-second pause between instructions.

As to why Twitter Roach came to be? Ransom tells CNET she imagined the currently dormant project as a reflection of the "overstimulation" us humans encounter in a digital world. We can certainly sympathize given our livelihoods, although its existence makes us nervous about 2013. If we're fighting off remote-controlled insect armies a year from now, we'll have to admit we had fair warning.

Continue reading Twitter Roach takes guidance from tweets, ushers in a terrifying 2013 (video)

Filed under: Robots, Alt

Comments

Via: CNET

Source: Chicago Artists' Coalition

WhiteSpace TweetTrain

Somebody knows how to have fun in the office and with Arduino. Have a look at this project by [whitespacers] powered with our boards

Christmas is a time of gathering the family around and enjoying the simple things in life. And what could be simpler than a good old fashioned train set… powered by tweets?

Tweeters can simply send a message to #tweettrain then enjoy the ride via the onboard camera streaming to whitespacers.com/tweettrain as they puff their way round the Whitespace HQ Winter Wonderland.

The magic also lets tweeters control the Tweet Train’s direction and speed by telling it to go in ‘reverse’ or ‘fast’.

Iain Valentine, creative director and Whitespace Santa said: “When visual, digital and experiential marketing are linked effectively, it can seem like magic. We wanted to bring our clients something special for the festive season and so our elves were kept busy bringing the late 19th century Christmas gift of choice into the digital age. Deep down, everyone wants a toy train set for Christmas!”

If you’re wondering which particular type of Christmas magic we used; it’s the extra special Arduino-micro-controller coupled with a wifi receiver type.

You see Santa’s elves replaced the Tweet Train’s manual train controller with a wifi receiver so the train can be controlled by digital commands. Tweets containing the hashtag #tweettrain are searched for, simplified, and sent to a new URL that the arduino checks for new tweets. Each time it spots one, it powers the train motors. Magic basically.

We reckon it gives the Hogwarts Express a run for its chocolate money, but why not try it for yourself? Visit. Tweet. Drive the train. The station is in live cam on the [website]

Arduino Blog 24 Dec 17:21

Animated holiday wreath from a string of LED lights

[Dennis Adams'] wreath lights project looks pretty good. But he did some amazing coding to produce a whole set of interesting animated patterns that really seal the deal for the project. Don’t miss the video after the break where he shows off all of his hard work.

He started with a string individually addressable LEDs. These are the 12mm variety like what Adafruit sells (we’ve seen them popping up in a number of projects). To mount each pixel he tried a several different prototypes before settling on a ring that was 14″ in diameter. The design was laser cut from acrylic, with sets of staggered holes to host each ring of LEDs. The final touch was to add ping-pong balls to diffuse the light.

As we mentioned earlier, the light patterns really add the finishing touch to the project, but there is more functionality there too. [Dennis] rolled in the ability to monitor a Twitter feed with the wreath. When he gets a new tweet, a different animation will let him know about it.

[Thanks Chris]


Filed under: Holiday Hacks, led hacks
Hack a Day 23 Dec 20:01

TFTweet – Displaying Tweets on an Arduino Shield with the Raspberry Pi

Drew Fustini recently got his hands on an AlaMode and used it display tweets from his Raspberry Pi to an 2.8" TFT LCD Touchscreen Shield. The AlaMode and shield are connected to the Raspberry Pi which runs the Arduino IDE and a bit of Python code to make it all happen.

Read the full article on MAKE

Twitter radio

This anthropomorphized wood bowl will read Tweets out loud. It was built by [William Lindmeier] as part of his graduate work in the Interactive Telecommunications Program (ITP) at New York University. View the clip after the break to see and hear a list from his Twitter feed read in rather pleasant text-to-speech voices.

The electronics involved are rather convoluted. Inside the upturned bowl you’ll find both an Arduino and a Raspberry Pi. But that’s not the only thing that goes into this. The best sounding text-to-speech program [William] could find was for OSX, so there is a remote computer involved as well. But we think what makes this special is the concept and execution, not the level of hardware inefficiency.

The knob to the left sets the volume and is also responsible for powering down the device. The knob of the right lets you select from various Twitter lists. Each turn of the knob is responded to with a different LED color in the nose and a spoken menu label. You can get a quick overview of the project from this summary post.


Filed under: arduino hacks, Raspberry Pi
Hack a Day 12 Dec 21:30