Posts with «featured» label

Talking Baymax inflatable robot greets kids at the pediatrician’s office

At Jason Poel Smith’s local pediatrician’s office, they have a variety of movie posters and displays to help make the environment more welcoming to kids. The most popular of them all is a huge inflatable Baymax robot character from the Disney movie Big Hero 6. 

While a beautiful display, Smith decided that what would make it even better is if it could talk, and went to work adding this functionality with an Arduino Uno, an MP3 shield, and a very large button. 

Now when kids arrive, they can hit the button to hear Baymax welcome them to the office as their “personal healthcare companion” via a pair of powered speakers. 

Arduino code and more info is available here, if you’d like to build something similar!

Arduino Blog 02 Oct 13:56

Augment RC vehicle control with an IMU-based transmitter

When piloting a vehicle remotely, it’s only natural to tilt your controller one way or the other to “help” guide it in the right direction. While usually this has no effect whatsoever, YouTuber Electronoobs decided to take this concept and run with it, creating a remote control transmitter that responds to an onboard MPU-6050 inertial measurement unit.

The transmitter’s Arduino Nano takes movement data, and sends the corresponding signals to a custom receiver board on the RC car via a pair of HC-12 wireless modules. A second Arduino mounted in the car then commands the vehicle’s DC motors with the help of an H-bridge. 

This is a radio controller that has 2 analog channels and the data is out from a MPU-6050 gyro module. So, we could control a toy car for example just by rotating the controller. I usually use the nRF24 module, but in this project I also want to show you how to use the HC-12 module. You will learn how to get the IMU data, how to use the HC-12 radio connection and how to control 2 DC motors using PWM signals and an H-bridge.

It’s quite a versatile build, and it can even be set up to output PWM signals if you need to interface with more advanced electronics.

Arduino Blog 02 Oct 13:43

Winners of the Arduino/Distrelec Automation & Robotics Contest announced!

Earlier this year, Distrelec launched an Automation & Robotics Contest that invited our community to help advance Industry 4.0 leveraging the Arduino ecosystem. Submissions were required to use Arduino hardware—ranging from WiFi (MKR1000 and Yún Rev2) to GSM/narrowband (MKR FOX 1200, MKR WAN 1300, and MKR GSM 1400) to feature-rich boards like the popular Mega and Due—along with Arduino Create to set up, control, and connect their devices.

Fast forward five months and the winning entries have now been selected, with the top project receiving a Keithley DMM6500 Bench Top Multimeter and a trip to Maker Faire Rome to showcase their work. Other prizes included a Weller WT1010 Set (2nd place) and Grove Starter Kits for Arduino (3rd-10th).

So without further ado, let’s take a look at the winners!

1st Place: Arduino Data Glasses for My Multimeter

2nd Place: Industrial Line Follower for Supplying Materials

Runner-Up: Accessibility Controls for Droids

Runner-Up: Skating Robot  

Runner-Up: Autonomous Home Assistant Robot

Runner-Up: Object Avoiding FSM Robot Arm

Runner-Up: Automatic Monorail Control

Runner-Up: Smart Crops: Implementing IoT in Conventional Agriculture

Runner-Up: Building a Sensor Network for an 18th Century Gristmill

Runner-Up: Robot Arm Controlled Through Ethernet

Congratulations to everyone! Be sure to also check out the contest page to browse through several other projects, such as an IoT platform for vehicles, a universal CNC machine, a gesture-controlled robotic arm, and more!

Vintage ham radio transformed into epic party game prop

Maker Thomas Meston needed a “mysterious looking device” that allows players to enter codes obtained via an original party game. What he came up with is entitled “Dr. Hallard’s Dream Transmission Box,” and consists of an Arduino, a party light, a smoke machine, and other components stuffed into a broken National NC-33 ham radio.

This radio makes a really excellent enclosure for the electronics inside, and when the device is properly activated the winning team hears a special message via an Arduino Uno-controlled MP3 shield, accompanied by laser lights and smoke. 

How it works:

  • When the box is switched on you hear static and see a yellow light. The device is ready for the codes to be entered.
  • Once all three dials have been set, the player switches the bottom toggle to “send” state, the box will message back whether team blue or team red has entered any codes with a quick flash of either a red or blue led.
  • If all three dials are set to red codes, the red team wins and hears a special message through the speaker just for them. The laser lights and smoke machine will be activated at the same time.
  • If all three dials are set to blue, a different message will play as well as activating the smoke machine and laser lights.

More info on the project can be found here, and while it might seem like a shame to modify this kind of vintage equipment, Meston notes that he sees this as giving it a nice second life since it was previously non-functional.

Arduino Blog 02 Oct 13:30

Custom “doorbell” flashes house lights for the hearing impaired

Darren Lewis’ parents both have a difficult time hearing the doorbell. He experimented with an off-the-shelf flashing light, but found that could only really be seen when they were in the room—an obvious problem. In response to this, Lewis decided to make his own system that flashes multiple house lights at the same time.

His device uses an Arduino Nano to detect the stock doorbell speaker voltage. When a press is sensed, it then activates a RF light switch via a modified remote, using an output pin and opto-isolator to substitute in for the normal button press. 

It’s a clever hack, and certainly one that will certainly help alleviate doorbell frustration in the future!

View the sea floor in 360° with this Arduino-powered dropcam

A dive mask or even SCUBA tanks are a great way to explore the ocean, but at depths of much more than 30 meters, things become a bit dicey. 1,000 meters is generally unthinkable for amateur divers but WorkshopScience has come up with a way to explore these regions without undue danger.

His device, developed during an internship with Blue Robotics, is touted as the world’s first consumer deep-sea dropcam. It’s able to dive to 1,000 meters and capture 360° video, as well as pressure and temperature readings. 

When a sufficient amount of time has passed, an Arduino board releases a weight by disintegrating a length of nichrome wire with electrical current. It then floats to the surface for data analysis. How it works, along with a resulting 360° video can be seen below.

Three-axis rotary machining with Arduino

For many years CNC machining was the purview of well-equipped shops and manufacturing facilities. With the availability of inexpensive control hardware, such as Arduino-based GRBL packages, this type of control has come to the (technically inclined) masses, enabling us to create complicated 2D and 3D shapes automatically.

Normally, this means X, Y, and Z axes that control a cutting head, and if you wanted to much further in complexity and cost, you could add a fourth or even a fifth axis to tilt things as needed. The RotoMill, however, seen at World Maker Faire in New York, puts a different “spin” on things, substituting a stepper-controlled spindle for the Y axis. The result is a machine with unique machining capabilities, driven by an Arduino Uno running custom GRBL firmware.

As for now, the CNC can easily mill parts out of softer materials like plastic, wood, and foam, although it is designed to cut aluminum as well.

A three-axis rotary CNC built for the Mechanical Engineering senior design capstone course at Carnegie Mellon University by a team of engineering students. The CNC uses NEMA24 motors for each of the axes, with the X and Z axes actuated by lead screws, and the A (rotary) axis actuated by a worm gear. The spindle is an off-the-shelf Makita hand router, which allows for any router bit to be used.

Each motor is controlled by a stepper motor driver, which are all coordinated by an Arduino Uno running a customized version of the GRBL firmware. This is in turn controlled by a laptop running open-source GCode sending software.

To generate the GCode, we would create a 3D model of the part that we wanted to machine. We then “unwrapped” about the A axis. This basically takes the part and converts it from Cartesian coordinates to Cylindrical coordinates.

To generate the GCode, we would create a 3D model of the part that we wanted to machine. We then “unwrapped” about the A axis. This basically takes the part and converts it from Cartesian coordinates to Cylindrical coordinates.

At this point, we could take the unwrapped part and load it into Autodesk HSM, a popular industrial CAM package. This allowed us to generate a toolpath for machining the part. We basically “fooled” the CNC into thinking that it was a normal, three-axis Cartesian CNC. The trick, however, is that the Y axis is wrapped around and becomes the A axis.

Additional information and photos can be found on RotoMill’s page or Hackaday’s recent write-up.

Calling volunteers for Maker Faire Rome!

Planning to attend Maker Faire Rome in October? We’re currently seeking volunteers to join our team during the event—staffing tables and displays, helping with demos, and providing technical assistance when necessary.

Those who help us for one shift will receive a day pass; spend two days with us, and you’ll have a ticket for the entire weekend to explore the show. Water and snacks will be provided, of course, and we’ve even prepared a small gift to show our appreciation for your time and effort.

Interested? Please fill out this questionnaire, and we’ll get back to you soon! (If you are under the age of 18, we will need your parents’ permission.)

Maker Faire Rome: AAA, cercasi volontarie e volontari per il booth Arduino

Cercasi volontari/e per Arduino! Hai in programma di visitare Maker Faire Roma? Siamo alla ricerca di volontarie e volontari per lo il nostro booth – che ci aiutino a spiegare i progetti e diano supporto durante le demo.

Con un turno di volontariato allo stand Arduino, avrai a disposizione un pass per la giornata; se, invece, sarai al nostro booth per almeno due giorni avrai il pass per l’intero evento. Sappiamo quanto sia importante il tuo tempo e quanto sia fondamentale il tuo aiuto al nostro booth, per questo motivo saremo felici di offrirti il pranzo e una selezione di gadget Arduino.

Ti interessa partecipare al booth Arduino? Per favore completa questo form, ti faremo sapere prestissimo!

Se hai meno di 18 anni, puoi partecipare ma con il consenso firmato dei tuoi genitori!

Star Wars mouse droid reveals hidden scrolling LED display

In several iterations of the Star Wars saga, small black droids can be seen scurrying around imperial installations. While they tend to fade into the background or provide a fun distraction in the movies, the mouse droid by Potent Printables acts as a sort of physical messaging app. It’s able to travel to the correct location, then pop open to unveil a scrolling LED sign.

Potent Printables can trigger the side door using a Bluetooth app on his phone. On command, an RC servo pushes it open, and lowers it down using a stepper motor/reel setup. An Arduino Uno along with an Adafruit Motor Shield are used for control, while an HC-05 module enables communication with the system.  

Check out the latest video in this build series below!

ArdOsc is a matchbox-sized, Arduino Nano-based oscilloscope

Oscilloscopes come in all different shapes and sizes, and now with just a few discreet components, maker Peter Balch has been able to turn an Arduino Nano into an oscilloscope the size of a matchbox. 

The simplest version of this device, which he calls the “ArdOsc,” displays data on a computer screen, but a small 1.3” OLED can also be added if you want to use it on its own.

His build write-up goes through several versions of the instrument, progressively adding capabilities including a logic display, signal generator, and other useful tools. It’s certainly worth checking out, whether you need tiny test equipment or just want to marvel at how something this small can be made!

This oscilloscope costs the price of an Arduino Nano, plus a few pence for resistors, etc. Its specifications are:

  • Max 1M samples/second, min 1000sps
  • 8-bits per sample
  • DC 0-5V; AC +/- 550mV, AC +/- 117mV, AC +/- 25mV
  • USB “PC scope” or built-in display
  • Could be battery-powered
  • Optional logic display
  • Optional frequency meter
  • Optional voltmeter