Posts with «featured» label

Traktorino is an open-source DIY MIDI controller for DJs

A keyboard and mouse is a great user interface system for general computing tasks, but in other situations custom knobs, sliders, and lights would certainly be more fun. If you enjoy making digital music, then you should check out this low-cost, Arduino-based MIDI controller by Nerd Musician.

The Traktorino gives you access to a plethora of knobs and sliders, as well as LEDs for custom feedback in a laser-cut package. Internally, the device acts as an Arduino Uno shield, and is designed to control Traktor DJ software by default. It also supports other MIDI programs, and perhaps could even be adapted to work with other applications as well.

The Traktorino is a MIDI class compliant device, designed for controlling Traktor. It has several features and custom made mappings, so you can take the most of the software. However, it can do much more than that. The Traktorino can control any software that accepts MIDI, like Ableton Live, Serato, FL Studio, Logic, etc.

More information and build files can be found here and on GitHub. You can see it in action in the video below!

This window blinds controller follows the sun

Blinds let you see out and let the light into your dwelling, then flip them down when you need privacy or darkness. They do, however, have their disadvantages in that the cords constantly get mixed up and tangled, and—most importantly—they’re not automated!

While we’ve seen several mods to the holder assembly for automation, cmp3mt’s device puts a different spin on things, holding the control rod with a sleeve made out of polymer clay, allowing it to turn with a continuous rotation servo.

The setup is powered by an Arduino Uno and features an LCD display for user feedback. A button is used for manual control, or it can operate via a timer or even based on a light-dependent resistor that enables it to open and close with the sun.

Arduino Yùn Rev.2 is here!

Since its launch in 2013, the Yùn–a small Linux machine and a microcontroller in a small Arduino form factor–found its way into hundreds of thousands of projects and professional applications. Last year, we decided that it was time for a refresh and began working hard to develop a true open-source design, with more compelling features and better overall software support.

The new board, which is expected to hit the market in the second half of April, will include enhanced functionality and compatibility with its predecessor.

Why a New Yùn

The Yùn enjoyed tremendous success; however, it ended up being affected by the internal issues we dealt with over the past couple of years and support has been quite intermittent.

For example, the board was never really an open-source product and the software had some challenges that we wanted to fix, especially from a security point of view.

What’s New in Rev.2

Hardware:  

  • Much better, more robust power supply
  • New Ethernet connector with a clever mounting solution that enables the use of all possible shields with no risk for accidental short circuits
  • Horizontal USB connector to save vertical space
  • Improved USB hub

Software: 

  • Software stack updated to OpenWRT latest version, including all patches
  • SSL support on the bridge Arduino / Linux bridge

Yùn Rev.2 is scheduled to begin shipping in April. Until then, you can stay up-to-date by clicking “NOTIFY ME” on our store

CTC Classics: Finding books with frickin’ laser beams!

CTC, a project from the 2015 edition

CTC stands for Creative Technologies in the Classroom, an initiative from Arduino Education aimed at helping teachers get up to speed with 21st century skills in the context of STEAM. We have been working with CTC since 2013, with our first experience in Castilla La Mancha, Spain. During a varying period of time, teachers are introduced to project-based learning as they run a full course with their students. At the end, teachers and students meet with their partners at a technology faire to show the result of an open-ended innovation process.

In this article series, I present projects made by students and exhibited at CTC faires. At those events, students come and pitch their experiments in front of hundreds of thousands of their peers from schools spanning all across their region. I select some of these projects and reinterpret them as a way to inspire other groups of students and their teachers in making new, interesting, user-centric, and thrilling projects.

What is CTC Catalunya and what makes it different?

CTC Catalunya is the longest of Arduino’s CTC projects, having had faires since 2015. Thanks to the generosity of the EduCaixa Foundation and the help from Cesire, Catalunya’s government department, we have reached out to as many as 200 public schools at the time of writing.

In order to achieve this, we designed a plan where the educators of different regions of Catalunya were trained in becoming trainers themselves, so that they could constitute their own regional support teams as a way to make the project sustainable over time. You can imagine that, after four years, there are many familiar faces. People have grown to like this project, and the CTC faire has become part of the educational landscape to the point that many teachers plan for it within their annual agendas.

What about the project I chose for this blog post 

One of my favorite projects of all-time is a system that enables you to look for books on the shelf by means of a laser pointer. Imagine you want to find that one novel; how many times have you had to browse through hundreds of your books and were unable to locate it for a while? Even if you have a database of all of your books, you would still have to make sure you place them in a certain location and need to go looking for it.

Two students at the CTC Catalunya Faire 2015 conceived the idea of a database of books that connected to an Arduino-controlled laser, which would point to a particular book on the shelf.

Schematic diagram: lasers, servo motors, and some code

As many years have passed since the project was presented, I don’t have documentation on how it was built. This is going to be a bit of the topic in this series. I am not looking at being super precise in replicating these projects; rather, my aim is provide some guidelines on how this could be made and inspire others to get the idea and improve it. If you want to see how I make things for real, I invite you to follow my livecast sessions every Thursday at 7pm CET. I’ll be implementing one project from scratch each month.

When it comes to my understanding on how this project was built, it is clear that the students used an Arduino Uno board, a Processing sketch, two standard servo motors, and a laser pointer. I have prepared a schematic for you to see how it could work, as well as a diagram that explains the basic interactions between the Processing code and the Arduino one.

(Here is where I have to apologize because of the diagram. I didn’t have a lot of time to enhance its appearance, but CC0 clipart images are your friend and let me make things quickly.)

An idea of how it works

Take a look at the flow chart above, which explains more about the project. The user will interact with the Processing sketch whenever he or she wants to search for a book. It is very likely the project that the students made had everything hardcoded in the program. In other words, the system was not letting you easily add new books to the database, but were stored in a text file that the Processing sketch would load upon boot.

The books were presented in the form of a dropdown list for you to choose from. Once you selected one of the items in the list, the Processing sketch would send the coordinates to the servo motors. Those coordinates also had to be stored in the same text file as the names of the books. With the coordinates, that had to be the angles for each one of the servos, the pointer would be directed towards the shelves, highlighting the location of the book.

Since this had to be shown at a faire where thousands of people would come by over a four-hour period, the students couldn’t prepare a much more complex presentation. This is why I have to make some assumptions about how far they went in their building. I also assume that they had to think through the ways to calibrate everything, since they didn’t have a lot of time to set up. The project worked flawlessly for the entire faire.

This is why I like it so much

At home we like books, we always have. When I was a kid, my parents had books in the living room, the dining room, mine and my brother’s room. As an adult, I have bought thousands of books and read every week. We own a 7m long bookshelf where books are sorted by color. When we discuss a project or think about possible ideas for what to build next, we look through our books. After a while, finding books is a time-consuming activity. I need one of these book-finding robots in my home!

Other projects with lasers?

You’ve likely seen at least one of the servo-controlled laser pointer projects for entertaining your cats here, here, or even here. Those are just one example of the fun things you can do with Arduino and lasers. In the context of CTC, there is actually a whole series of projects using laser diodes for creating music instruments. But that is an entirely different story, If you want to read about it, stay tuned for more adventures in CTC at the Arduino blog!

The CTC Caire was supported by Cesire at the Generalitat de Catalunya and the EduCaixa foundation.

pedalSHIELD MEGA is a programmable guitar pedal for your Arduino

If you want to create new guitar sounds without having to redo your pedal wiring every single time, the pedalSHIELD MEGA from ElectroSmash could be just what you’re looking for.

The pedalSHIELD MEGA takes input from a guitar via a standard ¼-inch cable, and uses an Arduino Mega to process the sounds to your liking. This new sound is then output using two PWM pins for a 16-bit resolution.

The device, which is available in kit form or as a PCB, sits on top of the Mega as an amazing looking shield. In addition to a 3PDT true bypass footswitch, a toggle switch, and two pushbuttons, the pedalSHIELD MEGA features an OLED display for visual feedback. Once assembled, all you need to do for an entirely unique sound is program your own effects in the Arduino IDE!

This shield that is placed on top of an Arduino Mega has three parts:

Analog Input Stage: The weak guitar signal is amplified and filtered, making it ready for the Arduino Mega ADC (Analog to Digital Converter).

Arduino Mega Board: It takes the digitalized waveform from the ADC and does all the DSP (Digital Signal Processing) creating effects (distortion, fuzz, volume, delay, etc).

 Output Stage: Once the new effected waveform is created inside the Arduino Mega board, this last stage takes it and using two combined PWMs generates the analog output signal.

You can find more details on the pedalSHIELD MEGA here, and see it in action below!

Check the time on a glow-in-the-dark UV LED clock

If you thought plot clocks that write on a tiny whiteboard were cool, this project takes things to the next level, jotting down the time not with a dry-erase marker, but with a UV LED on a glow-in-the-dark sticker.

The device itself uses an Arduino Uno for control, along with a RTC module for timekeeping, and a pair of servos that move the LED with custom linkages.

In addition to an awesome looking glow-surface, the clock has been upgraded with a full 3D-printed enclosure. For a quick overview of the project, you can check it out on Imgur. If you’d like to build your own, all the Arduino code and print files are available on Thingiverse.

A beautifully finished Arduino temperature and humidity sensor

Jay and Jamie wanted a temperature and humidity sensor for their workshop. Instead of buying something off the shelf or hooking up an Arduino with the proper sensor and breadboard, they went the extra mile.

The duo crafted a beautiful walnut enclosure—compete with a 3D-printed logo and a clever opening for the temperature display using an LCD screen. Humidity is indicated by the color of a NeoPixel ring, which shines through the artwork via a frosted plastic as a diffuser.

It’s immaculate on the outside, while hot glue is used extensively inside to hold everything in place. An Arduino Uno powers the build, attached by a handy plastic case.

We live in Central Texas where we get massive swings in humidity and temperature in the spring, which can be disastrous for certain woodworking projects. This cool project helps alert us when the humidity is changing or starts to get high so we can take precautions like moving our wood projects into the house, or not doing any milling during the high humidity weather. It also looks awesome and has our sweet logo.

Be sure to check out their entertaining video for lots of tips and tricks to make your project look excellent!

Desafío STEM 2017/18 in Spain

Telefónica Educación Digital, the education branch of Spanish telecommunications company Telefónica, arranged a contest for students in the fields of Science, Technology, Engineering and Math (STEM) for the second year. While the 2016/17 edition of the contest was launched only in Spain, 2017/18’s took place in Latin America as well. Just a week ago, the jury came to the final result for the current Spanish edition.

In the first edition, we in Arduino Education created an educational kit and content to assist a team of mentors that would in turn work with teachers all across Spain in helping them building projects within the limits of the contest. In the 2017/18 edition, we collaborated on a series of webinars for teachers hosted last fall. In both editions, I have acted as one of the jury members. The level of projects is pretty high in average. Considering that many of the participants come from secondary schools, it is quite impressive to see how they embrace the latest technological developments like IoT or VR and make meaningful projects out of those.

The winners of the Spanish version of the contest are invited to a trip to CERN to visit the place where things happen in science: the particle accelerator. Over 1,500 innovations were presented by seven-member teams within the categories established by TED: IoT, Industry 4.0, e-health, digital education, cybersecurity, and other technological projects. From those 1,500, the jury had to work really hard to come up with the final results. If you are among the non-chosen ones, you should know that the gap between the top 50-or-so projects was incredibly tight.

The following list highlights the four teams that were awarded by the jury. I have translated the information about the teams, but the videos from the students are only in Spanish. I hope you will find them as thrilling as I do!

Project 1

  • Title: AGROTECH
  • Topic: Livestock automation system
  • Level: Advance (junior high and vocational education)
  • Theme: Industry 4.0
  • School: Instituto de Educación Secundaria LOS OLMOS
  • City: Albacete
  • Description: AGROTECH implements a prototype to automate the systems to manage livestock. Using Arduino and a series of sensors, it is possible to monitor and refill the livestock’s food and water, control the light and ventilation of the stables, report alarms like fire or intrusions and eliminate leftovers. All information is captured in real-time and displayed on a website.

Project 2

  • Title: Virtual Detective (Detective Virtual)
  • Topic: Virtual reality spaces
  • Level: High (upper secondary)
  • Theme: Digital education
  • School: Colegio María Virgen
  • City: Madrid
  • Description: Virtual Detective is a virtual, guided tour to the school. The students have hidden a series of challenges along the way that are related to different school subjects. The virtual space is a gamified version of the class that helps the kids learn in an alternative way.

Project 3

  • Title: Recycling Is for Everyone (REPT, Reciclar Es Para Todos)
  • Topic: Other technological projects
  • Level: Junior (lower secondary)
  • Theme: Digital education
  • School: Colegio Santo Domingo
  • City: Santa Cruz de Tenerife
  • Description: REPT is a trash bin prototype that can classify the leftovers and will run a lottery among those recycling once the bin has been sent to the recycling station.

Project 4

  • Title: ALPHAPSI
  • Topic: VR platform for the diagnosis and treatment of students with special educational needs
  • Level: Advance
  • Theme: Digital education
  • School: Colegio Calasancio Hispalense
  • City: Sevilla
  • Description: ALPHAPSI consists of an application made in Processing that connects to a VR head-mounted display capable of detecting the wearer’s head movements. Thanks to a series of tests consisting of tracking an object moving in the VR space, the system can follow the movements and will help generating a diagnosis and treating students with attention disorders.

The Desafío STEM project is an initiative of Telefonica Educacion Digital and their project STEMbyme

These interactive hair extensions can communicate over Bluetooth

For the most part, the next generation of wearable technology development has been focused around your wrist, arm, ears, and even your face. Hair, however, remains a unique and much less explored material… until now, at least.

That’s because the team of Sarah Sterman, Molly Nicholas, Christine Dierk, and Professor Eric Paulos at UC Berkeley’s Hybrid Ecologies Lab have created interactive hair extensions capable of changing shape and color, sensing touch, and communicating over Bluetooth. The aptly named “HairIO” conceals a skeleton of nitinol wire, a shape memory alloy (SMA) that morphs into different forms when exposed to heat. An Arduino Nano handles control, enabling it to respond to stimulus such as messages from your phone using an Adafruit Bluefruit board.

That’s not the only trick of these fibers, as they can use thermochromic pigments to change color along with the SMA action, and respond to touch via capacitive sensing.

Human hair is a cultural material, with a rich history displaying individuality, cultural expression and group identity. It is malleable in length, color and style, highly visible, and embedded in a range of personal and group interactions. As wearable technologies move ever closer to the body, and embodied interactions become more common and desirable, hair presents a unique and little-explored site for novel interactions. In this paper, we present an exploration and working prototype of hair as a site for novel interaction, leveraging its position as something both public and private, social and personal, malleable and permanent. We develop applications and interactions around this new material in HairIO: a novel integration of hair-based technologies and braids that combine capacitive touch input and dynamic output through color and shape change. Finally, we evaluate this hair-based interactive technology with users, including the integration of HairIO within the landscape of existing wearable and mobile technologies.

Be sure to check out the video below and read more in the team’s tutorial here!

Arduino Blog 20 Mar 14:21

Control your computer sheet music with the PartitionsDuino

Performing an instrument well is hard enough, but flipping through sheet music while playing can slightly delay things in the best case, or can cause you to lose your concentration altogether. Music displayed on a computer is a similar story; however, Maxime Boudreau has a great solution using an Arduino Nano inside of a 3D-printed pedal assembly.

When set up with software found here, Boudreau’s DIY device allows you to control PDF sheet music on your laptop with the tap of a foot. While designed to work with a macOS app, there’s no reason something similar couldn’t be worked out under Windows or Linux as needed.

Check it out in action below!